扩展卡尔曼滤波(EKF)的限制

当f (x)或h (x)接近线性时,EKF在许多实际问题上表现良好。然而,它在高度非线性的区域中失败了

EKF的概念是基于模型的线性化而提出的。EKF估计包括线性化误差。线性化误差取决于相对于传播的不确定度的函数的非线性度,如下图所示。

图13.13:线性化误差

线性化误差-二D例

让我们看看线性化误差对极性到笛卡尔变换的影响。假设在极坐标下为一个正态分布的随机变量。我们想在笛卡尔坐标系中估计随机变量参数。一个距离向量r和一个角度θ描述了极坐标中的任何值。在笛卡尔坐标中,这些值用x和y坐标来描述。r、θ和x、y之间的依赖关系是非线性的:

极坐标下的随机变量参数(r、θ)为


σ=[ 0 . 05 0 . 5 ]
我们在极坐标中生成了1000个正态分布的随机点(样本)。每个样本在极坐标中代表一个可能的变量值。然后我们将所有的样本从极坐标转换为笛卡尔坐标。在极坐标上的随机变量分布是正态的。

左边的图描述了极坐标下随机变量的随机样本。右图描述了变换后随机变量在笛卡尔坐标下的随机样本。图上的椭圆表示随机变量的协方差

图13.15: EKF线性化的协方差。

我们可以看到实际和EKF线性化协方差之间的显著差异。EKF线性化的协方差包含了一个较高的线性化误差。

EKF产生了一个错误的估计。EKF估计的不确定性也相对较低(误差椭圆相对较窄)。EKF对一个错误的估计过于自信了!

扩展卡尔曼滤波器的一个常见选择是无味卡尔曼滤波器。

下面的图比较了EKF和UKF线性化的协方差。

图13.16: EKF vs。UKF线性化协方差。

我们可以看到,UKF线性化的协方差比EKF线性化的协方差更接近于实际的协方差

相关推荐
帅逼码农1 小时前
有限域、伽罗瓦域、扩域、素域、代数扩张、分裂域概念解释
算法·有限域·伽罗瓦域
Jayen H1 小时前
【优选算法】盛最多水的容器
算法
机跃1 小时前
递归算法常见问题(Java)
java·开发语言·算法
<但凡.1 小时前
题海拾贝:蓝桥杯 2020 省AB 乘法表
c++·算法·蓝桥杯
pzx_0012 小时前
【LeetCode】94.二叉树的中序遍历
算法·leetcode·职场和发展
我曾经是个程序员2 小时前
使用C#生成一张1G大小的空白图片
java·算法·c#
芒果de香蕉皮2 小时前
mavlink移植到单片机stm32f103c8t6,实现接收和发送数据
stm32·单片机·嵌入式硬件·算法·无人机
徐子童2 小时前
二分查找算法专题
数据结构·算法
小王子10242 小时前
数据结构与算法Python版 二叉查找树
数据结构·python·算法·二叉查找树
灰勒塔德3 小时前
Linux-----进程处理(文件IO资源使用)
linux·运维·算法