扩展卡尔曼滤波(EKF)的限制

当f (x)或h (x)接近线性时,EKF在许多实际问题上表现良好。然而,它在高度非线性的区域中失败了

EKF的概念是基于模型的线性化而提出的。EKF估计包括线性化误差。线性化误差取决于相对于传播的不确定度的函数的非线性度,如下图所示。

图13.13:线性化误差

线性化误差-二D例

让我们看看线性化误差对极性到笛卡尔变换的影响。假设在极坐标下为一个正态分布的随机变量。我们想在笛卡尔坐标系中估计随机变量参数。一个距离向量r和一个角度θ描述了极坐标中的任何值。在笛卡尔坐标中,这些值用x和y坐标来描述。r、θ和x、y之间的依赖关系是非线性的:

极坐标下的随机变量参数(r、θ)为


σ=[ 0 . 05 0 . 5 ]
我们在极坐标中生成了1000个正态分布的随机点(样本)。每个样本在极坐标中代表一个可能的变量值。然后我们将所有的样本从极坐标转换为笛卡尔坐标。在极坐标上的随机变量分布是正态的。

左边的图描述了极坐标下随机变量的随机样本。右图描述了变换后随机变量在笛卡尔坐标下的随机样本。图上的椭圆表示随机变量的协方差

图13.15: EKF线性化的协方差。

我们可以看到实际和EKF线性化协方差之间的显著差异。EKF线性化的协方差包含了一个较高的线性化误差。

EKF产生了一个错误的估计。EKF估计的不确定性也相对较低(误差椭圆相对较窄)。EKF对一个错误的估计过于自信了!

扩展卡尔曼滤波器的一个常见选择是无味卡尔曼滤波器。

下面的图比较了EKF和UKF线性化的协方差。

图13.16: EKF vs。UKF线性化协方差。

我们可以看到,UKF线性化的协方差比EKF线性化的协方差更接近于实际的协方差

相关推荐
Kaltistss22 分钟前
98.验证二叉搜索树
算法·leetcode·职场和发展
知己如祭26 分钟前
图论基础(DFS、BFS、拓扑排序)
算法
mit6.82435 分钟前
[Cyclone] 哈希算法 | SIMD优化哈希计算 | 大数运算 (Int类)
算法·哈希算法
c++bug38 分钟前
动态规划VS记忆化搜索(2)
算法·动态规划
哪 吒40 分钟前
2025B卷 - 华为OD机试七日集训第5期 - 按算法分类,由易到难,循序渐进,玩转OD(Python/JS/C/C++)
python·算法·华为od·华为od机试·2025b卷
军训猫猫头1 小时前
1.如何对多个控件进行高效的绑定 C#例子 WPF例子
开发语言·算法·c#·.net
success2 小时前
【爆刷力扣-数组】二分查找 及 衍生题型
算法
Orlando cron2 小时前
数据结构入门:链表
数据结构·算法·链表
牛客企业服务3 小时前
2025年AI面试推荐榜单,数字化招聘转型优选
人工智能·python·算法·面试·职场和发展·金融·求职招聘
糖葫芦君4 小时前
Policy Gradient【强化学习的数学原理】
算法