扩展卡尔曼滤波(EKF)的限制

当f (x)或h (x)接近线性时,EKF在许多实际问题上表现良好。然而,它在高度非线性的区域中失败了

EKF的概念是基于模型的线性化而提出的。EKF估计包括线性化误差。线性化误差取决于相对于传播的不确定度的函数的非线性度,如下图所示。

图13.13:线性化误差

线性化误差-二D例

让我们看看线性化误差对极性到笛卡尔变换的影响。假设在极坐标下为一个正态分布的随机变量。我们想在笛卡尔坐标系中估计随机变量参数。一个距离向量r和一个角度θ描述了极坐标中的任何值。在笛卡尔坐标中,这些值用x和y坐标来描述。r、θ和x、y之间的依赖关系是非线性的:

极坐标下的随机变量参数(r、θ)为


σ=[ 0 . 05 0 . 5 ]
我们在极坐标中生成了1000个正态分布的随机点(样本)。每个样本在极坐标中代表一个可能的变量值。然后我们将所有的样本从极坐标转换为笛卡尔坐标。在极坐标上的随机变量分布是正态的。

左边的图描述了极坐标下随机变量的随机样本。右图描述了变换后随机变量在笛卡尔坐标下的随机样本。图上的椭圆表示随机变量的协方差

图13.15: EKF线性化的协方差。

我们可以看到实际和EKF线性化协方差之间的显著差异。EKF线性化的协方差包含了一个较高的线性化误差。

EKF产生了一个错误的估计。EKF估计的不确定性也相对较低(误差椭圆相对较窄)。EKF对一个错误的估计过于自信了!

扩展卡尔曼滤波器的一个常见选择是无味卡尔曼滤波器。

下面的图比较了EKF和UKF线性化的协方差。

图13.16: EKF vs。UKF线性化协方差。

我们可以看到,UKF线性化的协方差比EKF线性化的协方差更接近于实际的协方差

相关推荐
练习时长一年6 小时前
LeetCode热题100(杨辉三角)
算法·leetcode·职场和发展
lzllzz237 小时前
bellman_ford算法
算法
栈与堆7 小时前
LeetCode 19 - 删除链表的倒数第N个节点
java·开发语言·数据结构·python·算法·leetcode·链表
sunfove7 小时前
麦克斯韦方程组 (Maxwell‘s Equations) 的完整推导
线性代数·算法·矩阵
Rui_Freely7 小时前
Vins-Fusion之 SFM准备篇(十二)
人工智能·算法·计算机视觉
yyy(十一月限定版)7 小时前
matlab矩阵的操作
算法·matlab·矩阵
努力学算法的蒟蒻8 小时前
day58(1.9)——leetcode面试经典150
算法·leetcode·面试
txinyu的博客8 小时前
map和unordered_map的性能对比
开发语言·数据结构·c++·算法·哈希算法·散列表
搞笑症患者8 小时前
压缩感知(Compressed Sensing, CS)
算法·最小二乘法·压缩感知·正交匹配追踪omp·迭代阈值it算法
im_AMBER8 小时前
Leetcode 101 对链表进行插入排序
数据结构·笔记·学习·算法·leetcode·排序算法