扩展卡尔曼滤波(EKF)的限制

当f (x)或h (x)接近线性时,EKF在许多实际问题上表现良好。然而,它在高度非线性的区域中失败了

EKF的概念是基于模型的线性化而提出的。EKF估计包括线性化误差。线性化误差取决于相对于传播的不确定度的函数的非线性度,如下图所示。

图13.13:线性化误差

线性化误差-二D例

让我们看看线性化误差对极性到笛卡尔变换的影响。假设在极坐标下为一个正态分布的随机变量。我们想在笛卡尔坐标系中估计随机变量参数。一个距离向量r和一个角度θ描述了极坐标中的任何值。在笛卡尔坐标中,这些值用x和y坐标来描述。r、θ和x、y之间的依赖关系是非线性的:

极坐标下的随机变量参数(r、θ)为


σ=[ 0 . 05 0 . 5 ]
我们在极坐标中生成了1000个正态分布的随机点(样本)。每个样本在极坐标中代表一个可能的变量值。然后我们将所有的样本从极坐标转换为笛卡尔坐标。在极坐标上的随机变量分布是正态的。

左边的图描述了极坐标下随机变量的随机样本。右图描述了变换后随机变量在笛卡尔坐标下的随机样本。图上的椭圆表示随机变量的协方差

图13.15: EKF线性化的协方差。

我们可以看到实际和EKF线性化协方差之间的显著差异。EKF线性化的协方差包含了一个较高的线性化误差。

EKF产生了一个错误的估计。EKF估计的不确定性也相对较低(误差椭圆相对较窄)。EKF对一个错误的估计过于自信了!

扩展卡尔曼滤波器的一个常见选择是无味卡尔曼滤波器。

下面的图比较了EKF和UKF线性化的协方差。

图13.16: EKF vs。UKF线性化协方差。

我们可以看到,UKF线性化的协方差比EKF线性化的协方差更接近于实际的协方差

相关推荐
算AI5 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
hyshhhh6 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
杉之7 小时前
选择排序笔记
java·算法·排序算法
烂蜻蜓7 小时前
C 语言中的递归:概念、应用与实例解析
c语言·数据结构·算法
OYangxf7 小时前
图论----拓扑排序
算法·图论
我要昵称干什么8 小时前
基于S函数的simulink仿真
人工智能·算法
AndrewHZ8 小时前
【图像处理基石】什么是tone mapping?
图像处理·人工智能·算法·计算机视觉·hdr
念九_ysl8 小时前
基数排序算法解析与TypeScript实现
前端·算法·typescript·排序算法
守正出琦8 小时前
日期类的实现
数据结构·c++·算法
ChoSeitaku8 小时前
NO.63十六届蓝桥杯备战|基础算法-⼆分答案|木材加工|砍树|跳石头(C++)
c++·算法·蓝桥杯