基于Transformer的路径规划 - 第五篇 GPT生成策略_解码方法优化

上一篇:基于Transformer的路径规划 - 第四篇 GPT模型优化


在上一篇中,我尝试优化GPT路径生成模型,但没有成功。在随机生成的测试集上,路径规划成功率只有99%左右。而使用传统的路径规划算法,例如A*,路径规划成功率能达到100%。显然,如果想让模型具备一定的实用价值,还需要继续提升指标。在本篇中,我将尝试通过优化GPT生成策略(在有些文章中又称为解码策略)来提升路径规划成功率。

我们将生成的路径用Tree来表示,在贪心搜索中,每次选择置信度最大的节点,因此只会生成一条路径。如果考虑置信度大于设定阈值ε的所有节点,那会是什么情况呢?

以下图为例:

若使用贪心搜索,生成的路径会发生碰撞,如下图所示:

若考虑置信度大于0.1的所有节点,则可以生成7条路径,如下图所示:

可视化结果如下:

可以看到,除了贪心搜索得到的路径发生了碰撞外,其它6条路径都是正确的。

这个实验结果让人看到了GPT模型在路径规划问题上的潜力:我们可以设置更低的阈值ε,一次生成多条路径,然后选择最好的一条路径,这样路径规划成功率就逼近100%了。


实验总结:

  1. 基于Transformer的模型至少能够解决简单的路径规划问题
  2. GPT生成模型需要搭配合适的生成策略才能挖掘出模型的潜力

全篇完

原文链接 请勿转载

相关推荐
Ama_tor5 分钟前
14.AI搭建preparationのBERT预训练模型进行文本分类
人工智能·深度学习·bert
QQ6765800816 分钟前
基于 PyTorch 的 VGG16 深度学习人脸识别检测系统的实现+ui界面
人工智能·pytorch·python·深度学习·ui·人脸识别
张较瘦_21 分钟前
[论文阅读] 人工智能 | 用大语言模型解决软件元数据“身份谜题”:科研软件的“认脸”新方案
论文阅读·人工智能·语言模型
Blossom.11826 分钟前
量子通信:从科幻走向现实的未来通信技术
人工智能·深度学习·目标检测·机器学习·计算机视觉·语音识别·量子计算
平凡灵感码头31 分钟前
OpenAI 即将推出 GPT-5:开启多模态、持续记忆对话新时代
人工智能·gpt
软件测试小仙女42 分钟前
鸿蒙APP测试实战:从HDC命令到专项测试
大数据·软件测试·数据库·人工智能·测试工具·华为·harmonyos
三花AI1 小时前
ComfyUI 子工作流功能:一次编辑全局更新
人工智能
大模型铲屎官1 小时前
【深度学习-Day 23】框架实战:模型训练与评估核心环节详解 (MNIST实战)
人工智能·pytorch·python·深度学习·大模型·llm·mnist
Elastic 中国社区官方博客1 小时前
Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合
大数据·人工智能·elasticsearch·搜索引擎·云计算·全文检索·aws
Jamence2 小时前
多模态大语言模型arxiv论文略读(106)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记