基于Transformer的路径规划 - 第五篇 GPT生成策略_解码方法优化

上一篇:基于Transformer的路径规划 - 第四篇 GPT模型优化


在上一篇中,我尝试优化GPT路径生成模型,但没有成功。在随机生成的测试集上,路径规划成功率只有99%左右。而使用传统的路径规划算法,例如A*,路径规划成功率能达到100%。显然,如果想让模型具备一定的实用价值,还需要继续提升指标。在本篇中,我将尝试通过优化GPT生成策略(在有些文章中又称为解码策略)来提升路径规划成功率。

我们将生成的路径用Tree来表示,在贪心搜索中,每次选择置信度最大的节点,因此只会生成一条路径。如果考虑置信度大于设定阈值ε的所有节点,那会是什么情况呢?

以下图为例:

若使用贪心搜索,生成的路径会发生碰撞,如下图所示:

若考虑置信度大于0.1的所有节点,则可以生成7条路径,如下图所示:

可视化结果如下:

可以看到,除了贪心搜索得到的路径发生了碰撞外,其它6条路径都是正确的。

这个实验结果让人看到了GPT模型在路径规划问题上的潜力:我们可以设置更低的阈值ε,一次生成多条路径,然后选择最好的一条路径,这样路径规划成功率就逼近100%了。


实验总结:

  1. 基于Transformer的模型至少能够解决简单的路径规划问题
  2. GPT生成模型需要搭配合适的生成策略才能挖掘出模型的潜力

全篇完

原文链接 请勿转载

相关推荐
蹦蹦跳跳真可爱58918 分钟前
Python----深度学习(基于深度学习Pytroch线性回归和曲线回归)
pytorch·python·深度学习·神经网络·回归·线性回归
周杰伦_Jay30 分钟前
continue插件实现IDEA接入本地离线部署的deepseek等大模型
java·数据结构·ide·人工智能·算法·数据挖掘·intellij-idea
海森大数据40 分钟前
Crawl4AI:打破数据孤岛,开启大语言模型的实时智能新时代
人工智能·语言模型·自然语言处理
果冻人工智能1 小时前
我在大厂做 机器学习工程经理:这六顶帽子,每天都在换
人工智能
萧鼎1 小时前
RAGFlow:构建高效检索增强生成流程的技术解析
人工智能·python
爱的叹息1 小时前
主流开源 LLM 应用开发平台详解
人工智能·开源
赋范大模型技术社区1 小时前
从0手撕代码搭建MCP Client与Server!详解DeepSeek、ollama、vLLM接入MCP实战!
人工智能·mcp
Baihai_IDP2 小时前
面对开源大模型浪潮,基础模型公司如何持续盈利?
人工智能·openai·deepseek
陈明勇2 小时前
MCP 实战:用 Go 语言开发一个查询 IP 信息的 MCP 服务器
人工智能·后端·mcp
浏览器爱好者2 小时前
如何下载适用于语音识别功能增强的Google Chrome浏览器
人工智能·chrome·语音识别