基于Transformer的路径规划 - 第五篇 GPT生成策略_解码方法优化

上一篇:基于Transformer的路径规划 - 第四篇 GPT模型优化


在上一篇中,我尝试优化GPT路径生成模型,但没有成功。在随机生成的测试集上,路径规划成功率只有99%左右。而使用传统的路径规划算法,例如A*,路径规划成功率能达到100%。显然,如果想让模型具备一定的实用价值,还需要继续提升指标。在本篇中,我将尝试通过优化GPT生成策略(在有些文章中又称为解码策略)来提升路径规划成功率。

我们将生成的路径用Tree来表示,在贪心搜索中,每次选择置信度最大的节点,因此只会生成一条路径。如果考虑置信度大于设定阈值ε的所有节点,那会是什么情况呢?

以下图为例:

若使用贪心搜索,生成的路径会发生碰撞,如下图所示:

若考虑置信度大于0.1的所有节点,则可以生成7条路径,如下图所示:

可视化结果如下:

可以看到,除了贪心搜索得到的路径发生了碰撞外,其它6条路径都是正确的。

这个实验结果让人看到了GPT模型在路径规划问题上的潜力:我们可以设置更低的阈值ε,一次生成多条路径,然后选择最好的一条路径,这样路径规划成功率就逼近100%了。


实验总结:

  1. 基于Transformer的模型至少能够解决简单的路径规划问题
  2. GPT生成模型需要搭配合适的生成策略才能挖掘出模型的潜力

全篇完

原文链接 请勿转载

相关推荐
酌沧3 分钟前
读懂深度学习中的梯度爆炸和梯度消失
人工智能·深度学习
DARLING Zero two♡10 分钟前
接入 AI Ping 限免接口,让 GLM-4.7 与 MiniMax-M2.1 成为你的免费 C++ 审计专家
开发语言·c++·人工智能
不惑_13 分钟前
通俗理解感知机(Perceptron)
人工智能·python
龙腾AI白云14 分钟前
【图神经网络初探(2)】
人工智能
说私域15 分钟前
移动互联网生态下定制开发开源AI智能名片S2B2C商城小程序源码在营销技术中的应用与发展
人工智能·小程序·开源
胡伯来了25 分钟前
24 Transformers - 训练自然语言处理模型
人工智能·自然语言处理·transformer·transformers
JoannaJuanCV25 分钟前
自动驾驶—CARLA仿真(29)传感器(Sensors and data)
人工智能·机器学习·自动驾驶
URBBRGROUN46729 分钟前
Spring AI @ToolParam 扩展注解改造实践
大数据·人工智能·spring
中科天工1 小时前
智能仓储解决方案到底是什么?
大数据·人工智能·智能
Ydwlcloud1 小时前
AWS国际云服务器新用户优惠全解析:如何聪明地迈出上云第一步?
服务器·人工智能·云计算·aws