基于Transformer的路径规划 - 第五篇 GPT生成策略_解码方法优化

上一篇:基于Transformer的路径规划 - 第四篇 GPT模型优化


在上一篇中,我尝试优化GPT路径生成模型,但没有成功。在随机生成的测试集上,路径规划成功率只有99%左右。而使用传统的路径规划算法,例如A*,路径规划成功率能达到100%。显然,如果想让模型具备一定的实用价值,还需要继续提升指标。在本篇中,我将尝试通过优化GPT生成策略(在有些文章中又称为解码策略)来提升路径规划成功率。

我们将生成的路径用Tree来表示,在贪心搜索中,每次选择置信度最大的节点,因此只会生成一条路径。如果考虑置信度大于设定阈值ε的所有节点,那会是什么情况呢?

以下图为例:

若使用贪心搜索,生成的路径会发生碰撞,如下图所示:

若考虑置信度大于0.1的所有节点,则可以生成7条路径,如下图所示:

可视化结果如下:

可以看到,除了贪心搜索得到的路径发生了碰撞外,其它6条路径都是正确的。

这个实验结果让人看到了GPT模型在路径规划问题上的潜力:我们可以设置更低的阈值ε,一次生成多条路径,然后选择最好的一条路径,这样路径规划成功率就逼近100%了。


实验总结:

  1. 基于Transformer的模型至少能够解决简单的路径规划问题
  2. GPT生成模型需要搭配合适的生成策略才能挖掘出模型的潜力

全篇完

原文链接 请勿转载

相关推荐
艾醒(AiXing-w)几秒前
打破信息差——2026年2月19日AI热点新闻速览
人工智能
小雨中_2 分钟前
2.5 动态规划方法
人工智能·python·深度学习·算法·动态规划
癫狂的兔子6 分钟前
【Python】【机器学习】DBSCAN算法
人工智能·机器学习
归一码字9 分钟前
DDPG手写讲解
人工智能·pytorch
得一录26 分钟前
Transformer架构的工作原理
深度学习·面试·aigc
skywalk816328 分钟前
windows下安装使用comfy
人工智能
天云数据33 分钟前
年末回顾:从鹦鹉到乌鸦,天云数据2025智能进化与产业深耕
人工智能
肾透侧视攻城狮41 分钟前
《解锁TensorFlow NLP实战:一站式掌握文本预处理、向量化技术与情感分析管道最佳实践》
人工智能·深度学习·文本预处理·向量化文本·向量化模式选项·bert分词器·tf构建文本处理管道
Zzz 小生42 分钟前
LangChain Short-term memory:短期记忆使用完全指南
人工智能·python·langchain·github
hqyjzsb1 小时前
非技术管理层推动企业AI转型的系统化实施策略
人工智能·跳槽·创业创新·学习方法·业界资讯·远程工作·程序员创富