基于Transformer的路径规划 - 第五篇 GPT生成策略_解码方法优化

上一篇:基于Transformer的路径规划 - 第四篇 GPT模型优化


在上一篇中,我尝试优化GPT路径生成模型,但没有成功。在随机生成的测试集上,路径规划成功率只有99%左右。而使用传统的路径规划算法,例如A*,路径规划成功率能达到100%。显然,如果想让模型具备一定的实用价值,还需要继续提升指标。在本篇中,我将尝试通过优化GPT生成策略(在有些文章中又称为解码策略)来提升路径规划成功率。

我们将生成的路径用Tree来表示,在贪心搜索中,每次选择置信度最大的节点,因此只会生成一条路径。如果考虑置信度大于设定阈值ε的所有节点,那会是什么情况呢?

以下图为例:

若使用贪心搜索,生成的路径会发生碰撞,如下图所示:

若考虑置信度大于0.1的所有节点,则可以生成7条路径,如下图所示:

可视化结果如下:

可以看到,除了贪心搜索得到的路径发生了碰撞外,其它6条路径都是正确的。

这个实验结果让人看到了GPT模型在路径规划问题上的潜力:我们可以设置更低的阈值ε,一次生成多条路径,然后选择最好的一条路径,这样路径规划成功率就逼近100%了。


实验总结:

  1. 基于Transformer的模型至少能够解决简单的路径规划问题
  2. GPT生成模型需要搭配合适的生成策略才能挖掘出模型的潜力

全篇完

原文链接 请勿转载

相关推荐
深度学习lover8 分钟前
<项目代码>yolo遥感航拍船舶识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·遥感船舶识别
qy-ll11 分钟前
最新MMO-IG生成图像论文学习(25/11/19)
图像处理·深度学习·学习·计算机视觉·论文学习·遥感
Coovally AI模型快速验证12 分钟前
基于SimCLR的自监督 YOLO:YOLOv5/8也能在低标注场景目标检测性能飙升
人工智能·科技·yolo·目标检测·机器学习·计算机视觉
不老刘29 分钟前
新一代图像生成工具:Nano Banana Pro 带来更自然的创作体验
人工智能·google·gemini·nano banana pro
袁庭新40 分钟前
人人都能学AI,人人都要学AI
人工智能·aigc
Tzarevich41 分钟前
前端调用大语言模型:基于 Vite 的工程化实践与 HTTP 请求详解
人工智能
Soonyang Zhang1 小时前
MoeDistributeDispatch算子代码阅读
人工智能·算子·ascendc
sanggou1 小时前
Windsurf AI IDE 完全使用指南
ide·人工智能
2501_941870562 小时前
人工智能与未来的工作:自动化与人类协作的新时代
大数据·人工智能