基于Transformer的路径规划 - 第五篇 GPT生成策略_解码方法优化

上一篇:基于Transformer的路径规划 - 第四篇 GPT模型优化


在上一篇中,我尝试优化GPT路径生成模型,但没有成功。在随机生成的测试集上,路径规划成功率只有99%左右。而使用传统的路径规划算法,例如A*,路径规划成功率能达到100%。显然,如果想让模型具备一定的实用价值,还需要继续提升指标。在本篇中,我将尝试通过优化GPT生成策略(在有些文章中又称为解码策略)来提升路径规划成功率。

我们将生成的路径用Tree来表示,在贪心搜索中,每次选择置信度最大的节点,因此只会生成一条路径。如果考虑置信度大于设定阈值ε的所有节点,那会是什么情况呢?

以下图为例:

若使用贪心搜索,生成的路径会发生碰撞,如下图所示:

若考虑置信度大于0.1的所有节点,则可以生成7条路径,如下图所示:

可视化结果如下:

可以看到,除了贪心搜索得到的路径发生了碰撞外,其它6条路径都是正确的。

这个实验结果让人看到了GPT模型在路径规划问题上的潜力:我们可以设置更低的阈值ε,一次生成多条路径,然后选择最好的一条路径,这样路径规划成功率就逼近100%了。


实验总结:

  1. 基于Transformer的模型至少能够解决简单的路径规划问题
  2. GPT生成模型需要搭配合适的生成策略才能挖掘出模型的潜力

全篇完

原文链接 请勿转载

相关推荐
这张生成的图像能检测吗19 小时前
(论文速读)GraphSAGE:大型图的归纳表示学习
人工智能·深度学习·机器学习·图神经网络·无监督学习
zhengfei6111 天前
AI渗透工具——AI驱动的自动化渗透测试框架 | 基于 Model Context Protocol (MCP) 架构
人工智能·架构·自动化
袁庭新1 天前
2025年终总结,智启
人工智能·aigc
540_5401 天前
ADVANCE Day35
人工智能·python·深度学习
百***07451 天前
Claude Opus 4.5 场景化实战指南:全链路赋能开发,提升效率翻倍
人工智能·gpt·开源
DeepVis Research1 天前
【2025深度学习全家桶】Android Studio Otter + CUDA 11.8/12.1 离线安装包 | AI开发环境一键搞定
pytorch·深度学习·android studio·cuda·stablediffusion
沛沛rh451 天前
深度学习0基础入门:从人工规则到神经网络的进化之旅
人工智能·深度学习·神经网络
hk11241 天前
【Quantum/Chaos】2026年度量子混沌模拟与社会技术系统演化基准索引 (Socio-Technical Benchmark)
人工智能·网络安全·系统架构·数据集·量子计算
郑泰科技1 天前
python深度学习报错:Original error was: No module named ‘numpy.core._multiarray_umath‘
python·深度学习·numpy
梦想画家1 天前
Apache AGE 实战进阶:从图查询到知识图谱+LLM知识问答全流程
人工智能·知识图谱·apache age