【综合算法学习】(第十九篇)

目录

不同路径(medium)

题目解析

讲解算法原理

编写代码

最⻓递增⼦序列(medium)

题目解析

讲解算法原理

编写代码


不同路径(medium)

题目解析

1.题目链接:. - 力扣(LeetCode)

2.题目描述

⼀个机器⼈位于⼀个mxn⽹格的左上⻆(起始点在下图中标记为"Start")。机器⼈每次只能向下或者向右移动⼀步。机器⼈试图达到⽹格的右下⻆(在下图中标记为"Finish")。

问总共有多少条不同的路径?

⽰例1:

输⼊:m=3,n=7

输出:28

⽰例2:

输⼊:m=3,n=2

输出:3

解释:

从左上⻆开始,总共有3条路径可以到达右下⻆。

1.向右->向下->向下

2.向下->向下->向右

3.向下->向右->向下

讲解算法原理

解法(暴搜->记忆化搜索->动态规划):
算法思路:
暴搜:

a. 递归含义:给 dfs ⼀个使命,给他⼀个下标,返回从 [0, 0] 位置⾛到 [i, j] 位置⼀

共有多少种⽅法;

b. 函数体:只要知道到达上⾯位置的⽅法数以及到达左边位置的⽅法数,然后累加起来即可;c. 递归出⼝:当下标越界的时候返回 0 ;当位于起点的时候,返回 1 。

记忆化搜索:

a. 加上⼀个备忘录;

b. 每次进⼊递归的时候,去备忘录⾥⾯看看;

c. 每次返回的时候,将结果加⼊到备忘录⾥⾯。

动态规划:

a. 递归含义->状态表⽰;

b. 函数体->状态转移⽅程;

c. 递归出⼝->初始化。

编写代码

c++算法代码:

cpp 复制代码
class Solution
{
public:
 int uniquePaths(int m, int n) 
 {
 // 动态规划
 vector<vector<int>> dp(m + 1, vector<int>(n + 1));
 dp[1][1] = 1;
 for(int i = 1; i <= m; i++)
 for(int j = 1; j <= n; j++)
 {
 if(i == 1 && j == 1) continue;
 dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
 }
 return dp[m][n];
 // 记忆化搜索
 // vector<vector<int>> memo(m + 1, vector<int>(n + 1));
 // return dfs(m, n, memo);
 }
 int dfs(int i, int j, vector<vector<int>>& memo)
 {
 if(memo[i][j] != 0)
 {
 return memo[i][j];
 }
 if(i == 0 || j == 0) return 0;
 if(i == 1 && j == 1)
 {
 memo[i][j] = 1;
 return 1;
 }
 memo[i][j] = dfs(i - 1, j, memo) + dfs(i, j - 1, memo);
 return memo[i][j];
 }
};

java算法代码:

java 复制代码
class Solution
{
 public int uniquePaths(int m, int n) 
 {
 // 动态规划
 int[][] dp = new int[m + 1][n + 1];
 dp[1][1] = 1;
 for(int i = 1; i <= m; i++)
 for(int j = 1; j <= n; j++)
 {
 if(i == 1 && j == 1) continue;
 dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
 }
 return dp[m][n];
 // 记忆化搜索
 // int[][] memo = new int[m + 1][n + 1];
 // return dfs(m, n, memo);
 }
 public int dfs(int i, int j, int[][] memo)
 {
 if(memo[i][j] != 0)
 {
 return memo[i][j];
 }
 if(i == 0 || j == 0) return 0;
 if(i == 1 && j == 1) 
 {
 memo[i][j] = 1;
 return 1;
 }
 memo[i][j] = dfs(i - 1, j, memo) + dfs(i, j - 1, memo);
 return memo[i][j];
 }
}

最⻓递增⼦序列(medium)

题目解析

1.题目链接:. - 力扣(LeetCode)

2.题目描述

给你⼀个整数数组nums,找到其中最⻓严格递增⼦序列的⻓度。⼦序列是由数组派⽣⽽来的序列,删除(或不删除)数组中的元素⽽不改变其余元素的顺序。例

如,[3,6,2,7]是数组[0,3,1,6,2,2,7]的⼦序列。

⽰例1:

输⼊:nums=[10,9,2,5,3,7,101,18]

输出:4

解释:最⻓递增⼦序列是[2,3,7,101],因此⻓度为4。

⽰例2:

输⼊:nums=[0,1,0,3,2,3]

输出:4

⽰例3:

输⼊:nums=[7,7,7,7,7,7,7]

输出:1

提⽰:

1<=nums.length<=2500

-10^4<=nums[i]<=10^4

讲解算法原理

解法(暴搜->记忆化搜索->动态规划):
算法思路:
暴搜:

a. 递归含义:给 dfs ⼀个使命,给他⼀个数 i ,返回以 i 位置为起点的最⻓递增⼦序列的⻓

度;

b. 函数体:遍历 i 后⾯的所有位置,看看谁能加到 i 这个元素的后⾯。统计所有情况下的最⼤

值。

c. 递归出⼝:因为我们是判断之后再进⼊递归的,因此没有出⼝~

记忆化搜索:

a. 加上⼀个备忘录;

b. 每次进⼊递归的时候,去备忘录⾥⾯看看;

c. 每次返回的时候,将结果加⼊到备忘录⾥⾯。

动态规划:

a. 递归含义->状态表⽰;

b. 函数体->状态转移⽅程;

c. 递归出⼝->初始化。

编写代码

c++算法代码:

cpp 复制代码
class Solution
{
public:
 int lengthOfLIS(vector<int>& nums) 
 {
 // 动态规划
 int n = nums.size();
 vector<int> dp(n, 1);
 int ret = 0;
 // 填表顺序:从后往前
 for(int i = n - 1; i >= 0; i--)
 {
 for(int j = i + 1; j < n; j++)
 {
 if(nums[j] > nums[i])
 {
 dp[i] = max(dp[i], dp[j] + 1);
 }
 }
 ret = max(ret, dp[i]);
 }
 return ret;
 
 // 记忆化搜索
 // 
 // vector<int> memo(n);
 // int ret = 0;
 // for(int i = 0; i < n; i++)
 // ret = max(ret, dfs(i, nums, memo));
 // return ret;
 }
 int dfs(int pos, vector<int>& nums, vector<int>& memo)
 {
 if(memo[pos] != 0) return memo[pos];
 int ret = 1;
 for(int i = pos + 1; i < nums.size(); i++)
 {
 if(nums[i] > nums[pos])
 {
 ret = max(ret, dfs(i, nums, memo) + 1);
 }
 }
 memo[pos] = ret;
 return ret;
 }
};

java算法代码:

java 复制代码
class Solution
{
 public int lengthOfLIS(int[] nums) 
 {
 int n = nums.length;
 int[] dp = new int[n];
 int ret = 0;
 Arrays.fill(dp, 1);
 // 填表顺序: 从后往前
 for(int i = n - 1; i >= 0; i--)
 {
 for(int j = i + 1; j < n; j++)
 {
 if(nums[j] > nums[i])
 {
 dp[i] = Math.max(dp[i], dp[j] + 1);
 }
 }
 ret = Math.max(ret, dp[i]);
 }
 return ret;
 
 // 记忆化搜索
 // int ret = 0;
 // int n = nums.length;
 // int[] memo = new int[n];
 // for(int i = 0; i < n; i++)
 // {
 // ret = Math.max(ret, dfs(i, nums, memo));
 // }
 // return ret;
 }
 public int dfs(int pos, int[] nums, int[] memo)
 {
 if(memo[pos] != 0) return memo[pos];
 int ret = 1;
 for(int i = pos + 1; i < nums.length; i++)
 {
 if(nums[i] > nums[pos])
 {
 ret = Math.max(ret, dfs(i, nums, memo) + 1);
 }
 }
 memo[pos] = ret;
 return ret;
 }
}
相关推荐
都叫我大帅哥1 小时前
深入浅出 Resilience4j:Java 微服务的“免疫系统”实战指南
java·spring cloud
Cao_Shixin攻城狮3 小时前
Flutter运行Android项目时显示java版本不兼容(Unsupported class file major version 65)的处理
android·java·flutter
古月-一个C++方向的小白5 小时前
C++11之lambda表达式与包装器
开发语言·c++
Dcs5 小时前
还在用 Arrays.hashCode?Java 自己也能写出更快的版本!
java
tanyongxi667 小时前
C++ AVL树实现详解:平衡二叉搜索树的原理与代码实现
开发语言·c++
Wendy14417 小时前
【线性回归(最小二乘法MSE)】——机器学习
算法·机器学习·线性回归
拾光拾趣录7 小时前
括号生成算法
前端·算法
fouryears_234177 小时前
Spring,Spring Boot 和 Spring MVC 的关系以及区别
java·spring boot·spring·mvc
阿葱(聪)8 小时前
java 在k8s中的部署流程
java·开发语言·docker·kubernetes
小妖6668 小时前
vscode 源码编译
ide·vscode·编辑器