本地部署bert-base-chinese模型交互式问答,gradio

首先下载bert-base-chinese,可以在 Huggingface, modelscope, github下载

pip install gradio torch transformers

python 复制代码
import gradio as gr
import torch
from transformers import BertTokenizer, BertForQuestionAnswering

# 加载bert-base-chinese模型和分词器
model_name = "D:/dev/php/magook/trunk/server/learn-python/models/bert-base-chinese"
tokenizer = BertTokenizer.from_pretrained(model_name)
model = BertForQuestionAnswering.from_pretrained(model_name)


def question_answering(context, question):
    # 使用分词器对输入进行处理
    inputs = tokenizer(question, context, return_tensors="pt")
    # 调用模型进行问答
    outputs = model(**inputs)
    # 获取答案的起始和结束位置
    start_scores = outputs.start_logits
    end_scores = outputs.end_logits
    # 获取最佳答案
    answer_start = torch.argmax(start_scores)
    answer_end = torch.argmax(end_scores) + 1
    answer = tokenizer.decode(inputs["input_ids"][0][answer_start:answer_end])
    return answer


# 创建Gradio界面
interface = gr.Interface(
    fn=question_answering,
    inputs=["text", "text"],  # 输入分别为context和question
    outputs="text",  # 输出为答案
)

interface.launch()

运行

bash 复制代码
> python llm_and_transformer/bert/use_bert-base-chinese4.py
Some weights of BertForQuestionAnswering were not initialized from the model checkpoint at D:/dev/php/magook/trunk/server/learn-python/models/bert-base-chinese and are
newly initialized: ['qa_outputs.bias', 'qa_outputs.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
Running on local URL:  http://127.0.0.1:7860

To create a public link, set `share=True` in `launch()`.

访问 http://127.0.0.1:7860

相关推荐
流浪的小新3 分钟前
【AI】人工智能、LLM学习资源汇总
人工智能·学习
martian6651 小时前
【人工智能数学基础篇】——深入详解多变量微积分:在机器学习模型中优化损失函数时应用
人工智能·机器学习·微积分·数学基础
人机与认知实验室2 小时前
人、机、环境中各有其神经网络系统
人工智能·深度学习·神经网络·机器学习
黑色叉腰丶大魔王2 小时前
基于 MATLAB 的图像增强技术分享
图像处理·人工智能·计算机视觉
迅易科技5 小时前
借助腾讯云质检平台的新范式,做工业制造企业质检的“AI慧眼”
人工智能·视觉检测·制造
古希腊掌管学习的神6 小时前
[机器学习]XGBoost(3)——确定树的结构
人工智能·机器学习
ZHOU_WUYI6 小时前
4.metagpt中的软件公司智能体 (ProjectManager 角色)
人工智能·metagpt
靴子学长7 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
AI_NEW_COME8 小时前
知识库管理系统可扩展性深度测评
人工智能
海棠AI实验室8 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习