[spark面试]spark与mapreduce的区别---在DAG方面

1、spark中的task是以线程实现的,而mapreduce中是以进程实现的。

进程的频繁启动和停止会增加资源的消耗。

2、spark中支持DAG,而mapreduce不支持DAG

DAG的使用:为什么支持DAG会更加高效

1)、在DAG图中,会将一个job划分为不同的stage,同一个stage会在内存中进行转换,而不同stage之间需要进行shuffle过程,否则对于spark来说,他并不知道哪一个RDD之间的转换需要使用磁盘。------即第三个区别

2)、spark的lazy模式(惰性求值),就是基于DAG图实现的,因为DAG图中存放了task中的血缘关系。

lazy模式的优点:

1、可以**减少数据传输和计算开销,**例如,多个转换操作可以在一次计算中并行执行,避免了多次中间结果的生成和传输。

2、优化执行计划: Spark 可以在执行时分析整个计算图,并应用各种优化技术,如 管道化(Pipelining)合并操作(Operation Fusion)

  1. spark的宽窄依赖和DAG的相互配合可以在某一个分区的数据丢失时,快速恢复,不需要从头开始。

若在一个stage中的有某一个分区的数据丢失,可以通过DAG和窄依赖(父RDD分区的数据只传递给子RDD的某一个分区)对该分区的数据进行回溯,当然若是跨了多个stage,就麻烦了。

3、spark主要是基于一个内存的引擎,而mapreduce是基于磁盘的。

相关推荐
边缘计算社区几秒前
首个!艾灵参编的工业边缘计算国家标准正式发布
大数据·人工智能·边缘计算
MZWeiei几秒前
Zookeeper的选举机制
大数据·分布式·zookeeper
MZWeiei几秒前
Zookeeper基本命令解析
大数据·linux·运维·服务器·zookeeper
学计算机的睿智大学生2 分钟前
Hadoop集群搭建
大数据·hadoop·分布式
一路狂飙的猪2 分钟前
RabbitMQ的工作模型
分布式·rabbitmq
miss writer41 分钟前
Redis分布式锁释放锁是否必须用lua脚本?
redis·分布式·lua
ThisIsClark1 小时前
【后端面试总结】MySQL主从复制逻辑的技术介绍
mysql·面试·职场和发展
m0_748254881 小时前
DataX3.0+DataX-Web部署分布式可视化ETL系统
前端·分布式·etl
程序猿进阶2 小时前
深入解析 Spring WebFlux:原理与应用
java·开发语言·后端·spring·面试·架构·springboot