[spark面试]spark与mapreduce的区别---在DAG方面

1、spark中的task是以线程实现的,而mapreduce中是以进程实现的。

进程的频繁启动和停止会增加资源的消耗。

2、spark中支持DAG,而mapreduce不支持DAG

DAG的使用:为什么支持DAG会更加高效

1)、在DAG图中,会将一个job划分为不同的stage,同一个stage会在内存中进行转换,而不同stage之间需要进行shuffle过程,否则对于spark来说,他并不知道哪一个RDD之间的转换需要使用磁盘。------即第三个区别

2)、spark的lazy模式(惰性求值),就是基于DAG图实现的,因为DAG图中存放了task中的血缘关系。

lazy模式的优点:

1、可以**减少数据传输和计算开销,**例如,多个转换操作可以在一次计算中并行执行,避免了多次中间结果的生成和传输。

2、优化执行计划: Spark 可以在执行时分析整个计算图,并应用各种优化技术,如 管道化(Pipelining)合并操作(Operation Fusion)

  1. spark的宽窄依赖和DAG的相互配合可以在某一个分区的数据丢失时,快速恢复,不需要从头开始。

若在一个stage中的有某一个分区的数据丢失,可以通过DAG和窄依赖(父RDD分区的数据只传递给子RDD的某一个分区)对该分区的数据进行回溯,当然若是跨了多个stage,就麻烦了。

3、spark主要是基于一个内存的引擎,而mapreduce是基于磁盘的。

相关推荐
Yvonne9781 小时前
创建三个节点
java·大数据
小钊(求职中)4 小时前
Java开发实习面试笔试题(含答案)
java·开发语言·spring boot·spring·面试·tomcat·maven
小小码农(找工作版)4 小时前
JavaScript 前端面试 4(作用域链、this)
前端·javascript·面试
bug404_4 小时前
分布式大语言模型服务引擎vLLM论文解读
人工智能·分布式·语言模型
OJAC近屿智能5 小时前
苹果新品今日发布,AI手机市场竞争加剧,近屿智能专注AI人才培养
大数据·人工智能·ai·智能手机·aigc·近屿智能
lucky_syq5 小时前
Spark算子:大数据处理的魔法棒
大数据·分布式·spark
uhakadotcom6 小时前
约束求解领域的最新研究进展
人工智能·面试·架构
昔我往昔7 小时前
项目中分库分表的分布式ID如何生成
分布式
超爱吃士力架8 小时前
MySQL 三层 B+ 树能存多少数据?
java·后端·面试
m0_748233648 小时前
【分布式】Hadoop完全分布式的搭建(零基础)
大数据·hadoop·分布式