[spark面试]spark与mapreduce的区别---在DAG方面

1、spark中的task是以线程实现的,而mapreduce中是以进程实现的。

进程的频繁启动和停止会增加资源的消耗。

2、spark中支持DAG,而mapreduce不支持DAG

DAG的使用:为什么支持DAG会更加高效

1)、在DAG图中,会将一个job划分为不同的stage,同一个stage会在内存中进行转换,而不同stage之间需要进行shuffle过程,否则对于spark来说,他并不知道哪一个RDD之间的转换需要使用磁盘。------即第三个区别

2)、spark的lazy模式(惰性求值),就是基于DAG图实现的,因为DAG图中存放了task中的血缘关系。

lazy模式的优点:

1、可以**减少数据传输和计算开销,**例如,多个转换操作可以在一次计算中并行执行,避免了多次中间结果的生成和传输。

2、优化执行计划: Spark 可以在执行时分析整个计算图,并应用各种优化技术,如 管道化(Pipelining)合并操作(Operation Fusion)

  1. spark的宽窄依赖和DAG的相互配合可以在某一个分区的数据丢失时,快速恢复,不需要从头开始。

若在一个stage中的有某一个分区的数据丢失,可以通过DAG和窄依赖(父RDD分区的数据只传递给子RDD的某一个分区)对该分区的数据进行回溯,当然若是跨了多个stage,就麻烦了。

3、spark主要是基于一个内存的引擎,而mapreduce是基于磁盘的。

相关推荐
ganshenml2 小时前
【GIT】Git 本地无法识别远程分支的原因与解决方法 not a valid ref
大数据·git·elasticsearch
火山引擎开发者社区3 小时前
DeepSeek-V3.2正式登陆火山方舟
大数据·人工智能
jqpwxt3 小时前
启点创新山水景区智慧旅游SAAS平台,智慧景区售检票系统,景区门票管理系统
大数据·旅游
嘻哈baby4 小时前
接口幂等性设计实战|防止重复提交的几种方案
分布式·环境测试
陀螺财经4 小时前
加密热潮“席卷”美国军界
大数据·人工智能·区块链
打码人的日常分享4 小时前
智慧城市一网统管建设方案,新型城市整体建设方案(PPT)
大数据·运维·服务器·人工智能·信息可视化·智慧城市
Sui_Network5 小时前
21shares 在纳斯达克推出 2 倍 SUI 杠杆 ETF(TXXS)
大数据·人工智能·游戏·金融·区块链
龙亘川5 小时前
开箱即用的智慧城市一网统管 AI 平台——功能模块详解(3)
大数据·人工智能·智慧城市·智慧城市一网统管 ai 平台
dragonzoebai6 小时前
ol加载互联网瓦片大于18级时空白
大数据
风止何安啊6 小时前
Event Loop 教你高效 “划水”:JS 单线程的“摸鱼”指南
前端·javascript·面试