[spark面试]spark与mapreduce的区别---在DAG方面

1、spark中的task是以线程实现的,而mapreduce中是以进程实现的。

进程的频繁启动和停止会增加资源的消耗。

2、spark中支持DAG,而mapreduce不支持DAG

DAG的使用:为什么支持DAG会更加高效

1)、在DAG图中,会将一个job划分为不同的stage,同一个stage会在内存中进行转换,而不同stage之间需要进行shuffle过程,否则对于spark来说,他并不知道哪一个RDD之间的转换需要使用磁盘。------即第三个区别

2)、spark的lazy模式(惰性求值),就是基于DAG图实现的,因为DAG图中存放了task中的血缘关系。

lazy模式的优点:

1、可以**减少数据传输和计算开销,**例如,多个转换操作可以在一次计算中并行执行,避免了多次中间结果的生成和传输。

2、优化执行计划: Spark 可以在执行时分析整个计算图,并应用各种优化技术,如 管道化(Pipelining)合并操作(Operation Fusion)

  1. spark的宽窄依赖和DAG的相互配合可以在某一个分区的数据丢失时,快速恢复,不需要从头开始。

若在一个stage中的有某一个分区的数据丢失,可以通过DAG和窄依赖(父RDD分区的数据只传递给子RDD的某一个分区)对该分区的数据进行回溯,当然若是跨了多个stage,就麻烦了。

3、spark主要是基于一个内存的引擎,而mapreduce是基于磁盘的。

相关推荐
青莲8431 小时前
RecyclerView 完全指南
android·前端·面试
青莲8431 小时前
Android WebView 混合开发完整指南
android·前端·面试
qq_262496092 小时前
Elasticsearch 核心参数调优指南
大数据·elasticsearch
OpenCSG2 小时前
AgenticOps 如何重构企业 AI 的全生命周期管理体系
大数据·人工智能·深度学习
阿里云大数据AI技术2 小时前
漫画说:为什么你的“增量计算”越跑越慢?——90%的实时数仓团队都踩过的坑,藏在这几格漫画里
大数据·人工智能
电商API_180079052472 小时前
批量获取电商商品数据的主流技术方法全解析
大数据·数据库·人工智能·数据分析·网络爬虫
Zoey的笔记本3 小时前
敏捷与稳定并行:Scrum看板+BPM工具选型指南
大数据·前端·数据库·python·低代码
俊哥大数据3 小时前
【项目7】 基于Flink新闻资讯大数据推荐系统
大数据·flink
Coder_Boy_4 小时前
基于SpringAI的在线考试系统-企业级软件研发工程应用规范实现细节
大数据·开发语言·人工智能·spring boot
Hello.Reader4 小时前
Flink State Processor API 读写/修复 Savepoint,把“状态”当成可查询的数据
大数据·flink