[spark面试]spark与mapreduce的区别---在DAG方面

1、spark中的task是以线程实现的,而mapreduce中是以进程实现的。

进程的频繁启动和停止会增加资源的消耗。

2、spark中支持DAG,而mapreduce不支持DAG

DAG的使用:为什么支持DAG会更加高效

1)、在DAG图中,会将一个job划分为不同的stage,同一个stage会在内存中进行转换,而不同stage之间需要进行shuffle过程,否则对于spark来说,他并不知道哪一个RDD之间的转换需要使用磁盘。------即第三个区别

2)、spark的lazy模式(惰性求值),就是基于DAG图实现的,因为DAG图中存放了task中的血缘关系。

lazy模式的优点:

1、可以**减少数据传输和计算开销,**例如,多个转换操作可以在一次计算中并行执行,避免了多次中间结果的生成和传输。

2、优化执行计划: Spark 可以在执行时分析整个计算图,并应用各种优化技术,如 管道化(Pipelining)合并操作(Operation Fusion)

  1. spark的宽窄依赖和DAG的相互配合可以在某一个分区的数据丢失时,快速恢复,不需要从头开始。

若在一个stage中的有某一个分区的数据丢失,可以通过DAG和窄依赖(父RDD分区的数据只传递给子RDD的某一个分区)对该分区的数据进行回溯,当然若是跨了多个stage,就麻烦了。

3、spark主要是基于一个内存的引擎,而mapreduce是基于磁盘的。

相关推荐
廋到被风吹走1 小时前
【Spring】Spring Cloud 分布式事务:Seata AT/TCC/Saga 模式选型指南
分布式·spring·spring cloud
阿蒙Amon1 小时前
C#每日面试题-常量和只读变量的区别
java·面试·c#
zandy10112 小时前
从 Workflow 到 Agent 模式!衡石多智能体协同架构,重新定义智能 BI 底层逻辑
大数据·信息可视化·架构
Elastic 中国社区官方博客2 小时前
Elastic:DevRel 通讯 — 2026 年 1 月
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
程序员小白条2 小时前
面试 Java 基础八股文十问十答第八期
java·开发语言·数据库·spring·面试·职场和发展·毕设
萤丰信息2 小时前
从 “钢筋水泥” 到 “数字神经元”:北京 AI 原点社区重构城市进化新逻辑
java·大数据·人工智能·安全·重构·智慧城市·智慧园区
驾数者3 小时前
Flink SQL容错机制:Checkpoint与Savepoint实战解析
大数据·sql·flink
千汇数据的老司机3 小时前
靠资源拿项目VS靠技术拿项目,二者的深刻区分。
大数据·人工智能·谈单
xlp666hub3 小时前
Linux 设备模型学习笔记(1)
面试·嵌入式
Elastic 中国社区官方博客5 小时前
jina-embeddings-v3 现已在 Elastic Inference Service 上可用
大数据·人工智能·elasticsearch·搜索引擎·ai·jina