[spark面试]spark与mapreduce的区别---在DAG方面

1、spark中的task是以线程实现的,而mapreduce中是以进程实现的。

进程的频繁启动和停止会增加资源的消耗。

2、spark中支持DAG,而mapreduce不支持DAG

DAG的使用:为什么支持DAG会更加高效

1)、在DAG图中,会将一个job划分为不同的stage,同一个stage会在内存中进行转换,而不同stage之间需要进行shuffle过程,否则对于spark来说,他并不知道哪一个RDD之间的转换需要使用磁盘。------即第三个区别

2)、spark的lazy模式(惰性求值),就是基于DAG图实现的,因为DAG图中存放了task中的血缘关系。

lazy模式的优点:

1、可以**减少数据传输和计算开销,**例如,多个转换操作可以在一次计算中并行执行,避免了多次中间结果的生成和传输。

2、优化执行计划: Spark 可以在执行时分析整个计算图,并应用各种优化技术,如 管道化(Pipelining)合并操作(Operation Fusion)

  1. spark的宽窄依赖和DAG的相互配合可以在某一个分区的数据丢失时,快速恢复,不需要从头开始。

若在一个stage中的有某一个分区的数据丢失,可以通过DAG和窄依赖(父RDD分区的数据只传递给子RDD的某一个分区)对该分区的数据进行回溯,当然若是跨了多个stage,就麻烦了。

3、spark主要是基于一个内存的引擎,而mapreduce是基于磁盘的。

相关推荐
唐兴通个人3 小时前
人工智能Deepseek医药AI培训师培训讲师唐兴通讲课课程纲要
大数据·人工智能
梦里不知身是客113 小时前
spark读取table中的数据【hive】
大数据·hive·spark
suuijbd4 小时前
SpringCloud+Netty集群即时通讯项目
spring boot·分布式·spring cloud·java-rabbitmq·java-zookeeper
赞奇科技Xsuperzone5 小时前
DGX Spark 实战解析:模型选择与效率优化全指南
大数据·人工智能·gpt·spark·nvidia
努力成为一个程序猿.6 小时前
Flink集群部署以及作业提交模式详解
大数据·flink
努力成为一个程序猿.6 小时前
【Flink】FlinkSQL-动态表和持续查询概念
大数据·数据库·flink
一叶飘零_sweeeet6 小时前
幂等性 VS 分布式锁:分布式系统一致性的两大护法 —— 从原理到实战的深度剖析
分布式·分布式锁·接口幂等
更深兼春远7 小时前
Spark on Yarn安装部署
大数据·分布式·spark
DolphinScheduler社区7 小时前
真实迁移案例:从 Azkaban 到 DolphinScheduler 的选型与实践
java·大数据·开源·任务调度·azkaban·海豚调度·迁移案例