[spark面试]spark与mapreduce的区别---在DAG方面

1、spark中的task是以线程实现的,而mapreduce中是以进程实现的。

进程的频繁启动和停止会增加资源的消耗。

2、spark中支持DAG,而mapreduce不支持DAG

DAG的使用:为什么支持DAG会更加高效

1)、在DAG图中,会将一个job划分为不同的stage,同一个stage会在内存中进行转换,而不同stage之间需要进行shuffle过程,否则对于spark来说,他并不知道哪一个RDD之间的转换需要使用磁盘。------即第三个区别

2)、spark的lazy模式(惰性求值),就是基于DAG图实现的,因为DAG图中存放了task中的血缘关系。

lazy模式的优点:

1、可以**减少数据传输和计算开销,**例如,多个转换操作可以在一次计算中并行执行,避免了多次中间结果的生成和传输。

2、优化执行计划: Spark 可以在执行时分析整个计算图,并应用各种优化技术,如 管道化(Pipelining)合并操作(Operation Fusion)

  1. spark的宽窄依赖和DAG的相互配合可以在某一个分区的数据丢失时,快速恢复,不需要从头开始。

若在一个stage中的有某一个分区的数据丢失,可以通过DAG和窄依赖(父RDD分区的数据只传递给子RDD的某一个分区)对该分区的数据进行回溯,当然若是跨了多个stage,就麻烦了。

3、spark主要是基于一个内存的引擎,而mapreduce是基于磁盘的。

相关推荐
写代码的【黑咖啡】2 小时前
如何在大数据数仓中搭建数据集市
大数据·分布式·spark
华清远见成都中心3 小时前
成都理工大学&华清远见成都中心实训,助力电商人才培养
大数据·人工智能·嵌入式
梦里不知身是客114 小时前
flume防止数据丢失的方法
大数据·flume
SoleMotive.4 小时前
kafka选型
分布式·kafka
铭哥的编程日记5 小时前
后端面试通关笔记:从真题到思路(五)
面试·职场和发展
鹏说大数据5 小时前
数据治理项目实战系列6-数据治理架构设计实战,流程 + 工具双架构拆解
大数据·数据库·架构
小二·6 小时前
MyBatis基础入门《十五》分布式事务实战:Seata + MyBatis 实现跨服务数据一致性
分布式·wpf·mybatis
前端一小卒6 小时前
一个看似“送分”的需求为何翻车?——前端状态机实战指南
前端·javascript·面试
xlp666hub6 小时前
C进阶之内存对齐,硬件总线和高并发伪共享的底层原理
面试·代码规范
xhxxx7 小时前
从被追问到被点赞:我靠“哨兵+快慢指针”展示了面试官真正想看的代码思维
javascript·算法·面试