[spark面试]spark与mapreduce的区别---在DAG方面

1、spark中的task是以线程实现的,而mapreduce中是以进程实现的。

进程的频繁启动和停止会增加资源的消耗。

2、spark中支持DAG,而mapreduce不支持DAG

DAG的使用:为什么支持DAG会更加高效

1)、在DAG图中,会将一个job划分为不同的stage,同一个stage会在内存中进行转换,而不同stage之间需要进行shuffle过程,否则对于spark来说,他并不知道哪一个RDD之间的转换需要使用磁盘。------即第三个区别

2)、spark的lazy模式(惰性求值),就是基于DAG图实现的,因为DAG图中存放了task中的血缘关系。

lazy模式的优点:

1、可以**减少数据传输和计算开销,**例如,多个转换操作可以在一次计算中并行执行,避免了多次中间结果的生成和传输。

2、优化执行计划: Spark 可以在执行时分析整个计算图,并应用各种优化技术,如 管道化(Pipelining)合并操作(Operation Fusion)

  1. spark的宽窄依赖和DAG的相互配合可以在某一个分区的数据丢失时,快速恢复,不需要从头开始。

若在一个stage中的有某一个分区的数据丢失,可以通过DAG和窄依赖(父RDD分区的数据只传递给子RDD的某一个分区)对该分区的数据进行回溯,当然若是跨了多个stage,就麻烦了。

3、spark主要是基于一个内存的引擎,而mapreduce是基于磁盘的。

相关推荐
一个会的不多的人2 小时前
数字化转型:概念性名词浅谈(第七十二讲)
大数据·人工智能·制造·数字化转型
Emrys_2 小时前
Redis 为什么这么快?一次彻底搞懂背-后的秘密 🚀
后端·面试
数据智能老司机2 小时前
在 Databricks 上的 Unity Catalog 数据治理——Unity Catalog 的内部机制
大数据·架构
聪明的笨猪猪3 小时前
Java Spring “事务” 面试清单(含超通俗生活案例与深度理解)
java·经验分享·笔记·面试
zycoder.3 小时前
力扣面试经典150题day3第五题(lc69),第六题(lc189)
算法·leetcode·面试
weixin_445476684 小时前
从“用框架”到“控系统”———架构通用能力(模块边界、分层设计、缓存策略、事务一致性、分布式思维)
分布式·缓存·架构
gb42152874 小时前
elasticsearch索引多长时间刷新一次(智能刷新索引根据数据条数去更新)
大数据·elasticsearch·jenkins
Mr.wangh4 小时前
Redis作为分布式锁
数据库·redis·分布式
小马爱打代码5 小时前
分布式锁:Redisson的公平锁
分布式
IT毕设梦工厂5 小时前
大数据毕业设计选题推荐-基于大数据的人体生理指标管理数据可视化分析系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·信息可视化·spark·毕业设计·源码·bigdata