[spark面试]spark与mapreduce的区别---在DAG方面

1、spark中的task是以线程实现的,而mapreduce中是以进程实现的。

进程的频繁启动和停止会增加资源的消耗。

2、spark中支持DAG,而mapreduce不支持DAG

DAG的使用:为什么支持DAG会更加高效

1)、在DAG图中,会将一个job划分为不同的stage,同一个stage会在内存中进行转换,而不同stage之间需要进行shuffle过程,否则对于spark来说,他并不知道哪一个RDD之间的转换需要使用磁盘。------即第三个区别

2)、spark的lazy模式(惰性求值),就是基于DAG图实现的,因为DAG图中存放了task中的血缘关系。

lazy模式的优点:

1、可以**减少数据传输和计算开销,**例如,多个转换操作可以在一次计算中并行执行,避免了多次中间结果的生成和传输。

2、优化执行计划: Spark 可以在执行时分析整个计算图,并应用各种优化技术,如 管道化(Pipelining)合并操作(Operation Fusion)

  1. spark的宽窄依赖和DAG的相互配合可以在某一个分区的数据丢失时,快速恢复,不需要从头开始。

若在一个stage中的有某一个分区的数据丢失,可以通过DAG和窄依赖(父RDD分区的数据只传递给子RDD的某一个分区)对该分区的数据进行回溯,当然若是跨了多个stage,就麻烦了。

3、spark主要是基于一个内存的引擎,而mapreduce是基于磁盘的。

相关推荐
源代码•宸8 小时前
分布式缓存-GO(分布式算法之一致性哈希、缓存对外服务化)
开发语言·经验分享·分布式·后端·算法·缓存·golang
Nautiluss9 小时前
一起玩XVF3800麦克风阵列(八)
大数据·人工智能·嵌入式硬件·github·音频·语音识别
Wang's Blog9 小时前
RabbitMQ: 消息中间件技术选型
分布式·rabbitmq
jqpwxt10 小时前
启点创新文旅度假区票务系统,度假区景区商户分账管理系统
大数据·旅游
玄微云10 小时前
选 AI 智能体开发公司?合肥玄微子科技有限公司的思路可参考
大数据·人工智能·科技·软件需求·门店管理
幂律智能10 小时前
幂律智能CTO张惟师受邀参加山南投融汇:AI正从「工具」进化为「虚拟专家」
大数据·人工智能
牛客企业服务12 小时前
2026年AI面试布局:破解规模化招聘的效率困局
人工智能·面试·职场和发展
a努力。12 小时前
HSBC Java面试被问:CAS如何解决ABA问题
java·开发语言·面试
十六年开源服务商13 小时前
WordPress站内SEO优化最佳实践指南
大数据·开源