[spark面试]spark与mapreduce的区别---在DAG方面

1、spark中的task是以线程实现的,而mapreduce中是以进程实现的。

进程的频繁启动和停止会增加资源的消耗。

2、spark中支持DAG,而mapreduce不支持DAG

DAG的使用:为什么支持DAG会更加高效

1)、在DAG图中,会将一个job划分为不同的stage,同一个stage会在内存中进行转换,而不同stage之间需要进行shuffle过程,否则对于spark来说,他并不知道哪一个RDD之间的转换需要使用磁盘。------即第三个区别

2)、spark的lazy模式(惰性求值),就是基于DAG图实现的,因为DAG图中存放了task中的血缘关系。

lazy模式的优点:

1、可以**减少数据传输和计算开销,**例如,多个转换操作可以在一次计算中并行执行,避免了多次中间结果的生成和传输。

2、优化执行计划: Spark 可以在执行时分析整个计算图,并应用各种优化技术,如 管道化(Pipelining)合并操作(Operation Fusion)

  1. spark的宽窄依赖和DAG的相互配合可以在某一个分区的数据丢失时,快速恢复,不需要从头开始。

若在一个stage中的有某一个分区的数据丢失,可以通过DAG和窄依赖(父RDD分区的数据只传递给子RDD的某一个分区)对该分区的数据进行回溯,当然若是跨了多个stage,就麻烦了。

3、spark主要是基于一个内存的引擎,而mapreduce是基于磁盘的。

相关推荐
Java 第一深情41 分钟前
零基础入门Flink,掌握基本使用方法
大数据·flink·实时计算
MXsoft6181 小时前
华为服务器(iBMC)硬件监控指标解读
大数据·运维·数据库
PersistJiao2 小时前
Spark 分布式计算中网络传输和序列化的关系(二)
大数据·网络·spark·序列化·分布式计算
九河云2 小时前
如何对AWS进行节省
大数据·云计算·aws
FreeIPCC2 小时前
谈一下开源生态对 AI人工智能大模型的促进作用
大数据·人工智能·机器人·开源
梦幻通灵3 小时前
ES分词环境实战
大数据·elasticsearch·搜索引擎
Elastic 中国社区官方博客3 小时前
Elasticsearch 中的热点以及如何使用 AutoOps 解决它们
大数据·运维·elasticsearch·搜索引擎·全文检索
天冬忘忧3 小时前
Kafka 工作流程解析:从 Broker 工作原理、节点的服役、退役、副本的生成到数据存储与读写优化
大数据·分布式·kafka
我明天再来学Web渗透4 小时前
【SQL50】day 2
开发语言·数据结构·leetcode·面试
sevevty-seven4 小时前
幻读是什么?用什么隔离级别可以防止幻读
大数据·sql