线性代数小述(一)

线性代数小述(一)

by Amamiya_Fuko

斜阳洒落,仍是今朝

踉跄西去,不见东还

前言

线性代数是什么?它什么也不是,也可以是什么,它的意义是随意的、偶然的,也许它是期末考试的科目,又或者是解决问题的工具,但现在它是我们欲望的名,是我的自我,是神圣的本体,总之,是有趣的东西,希望你享受其中。

线性变换

线性变换 是一个同态映射,这同样也是说,线性变换是两个代数系统的同态映射。

这两个代数系统也就是向量空间,向量空间是一个特殊的代数结构,它不是环也不是群。

向量空间

向量可以被理解为一些代数的集合,如有向量 v → = { a , b , c , d } \overset{\to}{v} = \{a,b,c,d\} v→={a,b,c,d}

向量空间由一个在向量集上的二元运算、以及一个由向量集、数集到向量集的二元运算组成组成,对应着向量加法与向量倍乘。

我们可以将矩阵理解为向量的集合,如

v 1 → v 2 → v 3 → \] = \[ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 \] \\left\[ \\begin{array}{c} \\overset{\\to}{v_1} \\\\ \\overset{\\to}{v_2} \\\\ \\overset{\\to}{v_3} \\\\ \\end{array} \\right\] =\\left\[ \\begin{array}{ccc} a_{11} \& a_{12} \& a_{13} \\\\ a_{21} \& a_{22} \& a_{23} \\\\ a_{31} \& a_{32} \& a_{33} \\end{array} \\right\] v1→v2→v3→ = a11a21a31a12a22a32a13a23a33 设想一个由两个向量推导出的向量空间,如向量 v 1 → = \[ 1 0 \] \\overset{\\to}{v_1}=\\left\[\\begin{array}{c}1\\\\ 0 \\end{array}\\right\] v1→=\[10\]以及向量 v 2 → = \[ 0 1 \] \\overset{\\to}{v_2}=\\left\[\\begin{array}{c}0\\\\ 1\\end{array}\\right\] v2→=\[01

显然的,在考虑满足封闭性的情况下,向量空间的向量集必然是一个平面。

又显然的,既然向量空间封闭,那么向量空间中的全体元与其中某元的运算必然回到向量空间中。

相关推荐
sp4218 分钟前
白话 LRU 缓存及链表的数据结构讲解(二)
算法
PineappleCoder44 分钟前
为什么说发布 - 订阅是代码的 “万能胶水”?解耦逻辑全解析
前端·javascript·算法
墨染点香1 小时前
LeetCode 刷题【43. 字符串相乘】
算法·leetcode·职场和发展
weixin_307779131 小时前
VS Code配置MinGW64编译Ipopt库
开发语言·c++·vscode·算法
Keying,,,,1 小时前
力扣hot100 | 矩阵 | 73. 矩阵置零、54. 螺旋矩阵、48. 旋转图像、240. 搜索二维矩阵 II
python·算法·leetcode·矩阵
sp421 小时前
白话 LRU 缓存及链表的数据结构讲解(一)
算法
_不会dp不改名_3 小时前
leetcode_42 接雨水
算法·leetcode·职场和发展
Swaggy T3 小时前
自动驾驶轨迹规划算法——Apollo EM Planner
人工智能·算法·自动驾驶
野生的编程萌新3 小时前
从冒泡到快速排序:探索经典排序算法的奥秘(二)
c语言·开发语言·数据结构·c++·算法·排序算法
iLoyalty3 小时前
防御保护15
算法·哈希算法