线性代数小述(一)

线性代数小述(一)

by Amamiya_Fuko

斜阳洒落,仍是今朝

踉跄西去,不见东还

前言

线性代数是什么?它什么也不是,也可以是什么,它的意义是随意的、偶然的,也许它是期末考试的科目,又或者是解决问题的工具,但现在它是我们欲望的名,是我的自我,是神圣的本体,总之,是有趣的东西,希望你享受其中。

线性变换

线性变换 是一个同态映射,这同样也是说,线性变换是两个代数系统的同态映射。

这两个代数系统也就是向量空间,向量空间是一个特殊的代数结构,它不是环也不是群。

向量空间

向量可以被理解为一些代数的集合,如有向量 v → = { a , b , c , d } \overset{\to}{v} = \{a,b,c,d\} v→={a,b,c,d}

向量空间由一个在向量集上的二元运算、以及一个由向量集、数集到向量集的二元运算组成组成,对应着向量加法与向量倍乘。

我们可以将矩阵理解为向量的集合,如

v 1 → v 2 → v 3 → \] = \[ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 \] \\left\[ \\begin{array}{c} \\overset{\\to}{v_1} \\\\ \\overset{\\to}{v_2} \\\\ \\overset{\\to}{v_3} \\\\ \\end{array} \\right\] =\\left\[ \\begin{array}{ccc} a_{11} \& a_{12} \& a_{13} \\\\ a_{21} \& a_{22} \& a_{23} \\\\ a_{31} \& a_{32} \& a_{33} \\end{array} \\right\] v1→v2→v3→ = a11a21a31a12a22a32a13a23a33 设想一个由两个向量推导出的向量空间,如向量 v 1 → = \[ 1 0 \] \\overset{\\to}{v_1}=\\left\[\\begin{array}{c}1\\\\ 0 \\end{array}\\right\] v1→=\[10\]以及向量 v 2 → = \[ 0 1 \] \\overset{\\to}{v_2}=\\left\[\\begin{array}{c}0\\\\ 1\\end{array}\\right\] v2→=\[01

显然的,在考虑满足封闭性的情况下,向量空间的向量集必然是一个平面。

又显然的,既然向量空间封闭,那么向量空间中的全体元与其中某元的运算必然回到向量空间中。

相关推荐
Coovally AI模型快速验证8 分钟前
数据集分享 | 智慧农业实战数据集精选
人工智能·算法·目标检测·机器学习·计算机视觉·目标跟踪·无人机
墨尘游子16 分钟前
目标导向的强化学习:问题定义与 HER 算法详解—强化学习(19)
人工智能·python·算法
恣艺42 分钟前
LeetCode 854:相似度为 K 的字符串
android·算法·leetcode
予早43 分钟前
《代码随想录》刷题记录
算法
满分观察网友z1 小时前
别总想着排序!我在数据看板中悟出的O(N)求第三大数神技(414. 第三大的数)
算法
满分观察网友z1 小时前
别只知道暴力循环!我从用户名校验功能中领悟到的高效字符集判断法(1684. 统计一致字符串的数目)
算法
刚入坑的新人编程1 小时前
暑期算法训练.9
数据结构·c++·算法·leetcode·面试·排序算法
码事漫谈1 小时前
AGI就像暴雨,可能说来就来
算法
workflower2 小时前
数据分析前景
算法·数据挖掘·数据分析·需求分析·软件需求
牵牛老人2 小时前
OpenCV学习探秘之二 :数字图像的矩阵原理,OpenCV图像类与常用函数接口说明,及其常见操作核心技术详解
opencv·学习·矩阵