【LLaMa-Factory】监督微调训练方法

命令行

您可以使用以下命令进行微调:

复制代码
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml

examples/train_lora/llama3_lora_sft.yaml 提供了微调时的配置示例。该配置指定了模型参数、微调方法参数、数据集参数以及评估参数等。您需要根据自身需求自行配置。

复制代码
### examples/train_lora/llama3_lora_sft.yaml
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct

stage: sft
do_train: true
finetuning_type: lora
lora_target: all

dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16

output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true

per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000

val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

备注

模型 model_name_or_path 、数据集 dateset 需要存在且与 template 相对应。

名称 描述
model_name_or_path 模型名称或路径
stage 训练阶段,可选: rm(reward modeling), pt(pretrain), sft(Supervised Fine-Tuning), PPO, DPO, KTO, ORPO
do_train true用于训练, false用于评估
finetuning_type 微调方式。可选: freeze, lora, full
lora_target 采取LoRA方法的目标模块,默认值为 all
dataset 使用的数据集,使用","分隔多个数据集
template 数据集模板,请保证数据集模板与模型相对应。
output_dir 输出路径
logging_steps 日志输出步数间隔
save_steps 模型断点保存间隔
overwrite_output_dir 是否允许覆盖输出目录
per_device_train_batch_size 每个设备上训练的批次大小
gradient_accumulation_steps 梯度积累步数
max_grad_norm 梯度裁剪阈值
learning_rate 学习率
lr_scheduler_type 学习率曲线,可选 linear, cosine, polynomial, constant 等。
num_train_epochs 训练周期数
bf16 是否使用 bf16 格式
warmup_ratio 学习率预热比例
warmup_steps 学习率预热步数
push_to_hub 是否推送模型到 Huggingface
[重要训练参数]

摘自SFT 训练 - LLaMA Factory 方面后面查找阅读。

相关推荐
qinyia43 分钟前
Wisdom SSH 是一款创新性工具,通过集成 AI 助手,为服务器性能优化带来极大便利。
服务器·人工智能·ssh
昨日之日20063 小时前
Wan2.2-S2V - 音频驱动图像生成电影级质量的数字人视频 ComfyUI工作流 支持50系显卡 一键整合包下载
人工智能·音视频
SEO_juper6 小时前
大型语言模型SEO(LLM SEO)完全手册:驾驭搜索新范式
人工智能·语言模型·自然语言处理·chatgpt·llm·seo·数字营销
攻城狮7号6 小时前
腾讯混元翻译模型Hunyuan-MT-7B开源,先前拿了30个冠军
人工智能·hunyuan-mt-7b·腾讯混元翻译模型·30个冠军
zezexihaha7 小时前
从“帮写文案”到“管生活”:个人AI工具的边界在哪?
人工智能
算家云7 小时前
nano banana官方最强Prompt模板来了!六大场景模板详解
人工智能·谷歌·ai大模型·算家云·ai生图·租算力,到算家云·nano banana 提示词
暴躁的大熊7 小时前
AI助力决策:告别生活与工作中的纠结,明析抉择引领明智选择
人工智能
Gyoku Mint7 小时前
提示词工程(Prompt Engineering)的崛起——为什么“会写Prompt”成了新技能?
人工智能·pytorch·深度学习·神经网络·语言模型·自然语言处理·nlp
梁小憨憨7 小时前
zotero扩容
人工智能·笔记
大数据张老师7 小时前
AI架构师的思维方式与架构设计原则
人工智能·架构师·ai架构·后端架构