【LLaMa-Factory】监督微调训练方法

命令行

您可以使用以下命令进行微调:

复制代码
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml

examples/train_lora/llama3_lora_sft.yaml 提供了微调时的配置示例。该配置指定了模型参数、微调方法参数、数据集参数以及评估参数等。您需要根据自身需求自行配置。

复制代码
### examples/train_lora/llama3_lora_sft.yaml
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct

stage: sft
do_train: true
finetuning_type: lora
lora_target: all

dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16

output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true

per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000

val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

备注

模型 model_name_or_path 、数据集 dateset 需要存在且与 template 相对应。

名称 描述
model_name_or_path 模型名称或路径
stage 训练阶段,可选: rm(reward modeling), pt(pretrain), sft(Supervised Fine-Tuning), PPO, DPO, KTO, ORPO
do_train true用于训练, false用于评估
finetuning_type 微调方式。可选: freeze, lora, full
lora_target 采取LoRA方法的目标模块,默认值为 all
dataset 使用的数据集,使用","分隔多个数据集
template 数据集模板,请保证数据集模板与模型相对应。
output_dir 输出路径
logging_steps 日志输出步数间隔
save_steps 模型断点保存间隔
overwrite_output_dir 是否允许覆盖输出目录
per_device_train_batch_size 每个设备上训练的批次大小
gradient_accumulation_steps 梯度积累步数
max_grad_norm 梯度裁剪阈值
learning_rate 学习率
lr_scheduler_type 学习率曲线,可选 linear, cosine, polynomial, constant 等。
num_train_epochs 训练周期数
bf16 是否使用 bf16 格式
warmup_ratio 学习率预热比例
warmup_steps 学习率预热步数
push_to_hub 是否推送模型到 Huggingface
[重要训练参数]

摘自SFT 训练 - LLaMA Factory 方面后面查找阅读。

相关推荐
北辰alk2 小时前
RAG索引流程详解:如何高效解析文档构建知识库
人工智能
九河云2 小时前
海上风电“AI偏航对风”:把发电量提升2.1%,单台年增30万度
大数据·人工智能·数字化转型
wm10432 小时前
机器学习第二讲 KNN算法
人工智能·算法·机器学习
沈询-阿里2 小时前
Skills vs MCP:竞合关系还是互补?深入解析Function Calling、MCP和Skills的本质差异
人工智能·ai·agent·ai编程
xiaobai1782 小时前
测试工程师入门AI技术 - 前序:跨越焦虑,从优势出发开启学习之旅
人工智能·学习
盛世宏博北京2 小时前
云边协同・跨系统联动:智慧档案馆建设与功能落地
大数据·人工智能
TGITCIC3 小时前
讲透知识图谱Neo4j在构建Agent时到底怎么用(二)
人工智能·知识图谱·neo4j·ai agent·ai智能体·大模型落地·graphrag
逆羽飘扬3 小时前
DeepSeek-mHC深度拆解:流形约束如何驯服狂暴的超连接?
人工智能
bing.shao3 小时前
AI工作流如何开始
人工智能
小途软件3 小时前
用于机器人电池电量预测的Sarsa强化学习混合集成方法
java·人工智能·pytorch·python·深度学习·语言模型