一款 C# 编写的神经网络计算图框架

前言

深度学习技术的不断发展,神经网络在各个领域得到了广泛应用。为了满足 .NET 开发的需求,推荐一款使用 C# 编写的神经网络计算图框架。

框架的使用方法接近 PyTorch,提供了丰富的示例和详细的文档,帮助大家快速上手。

框架介绍

项目完全使用 C# 编写,提供了一个透明的神经网络计算图框架。用户可以查看和理解框架内部的任何实现细节。

框架支持多种网络结构,包括卷积神经网络(CNN)、反向传播网络(BP)、全连接网络(FCN)、长短期记忆网络(LSTM)、卷积长短期记忆网络(ConvLSTM)和门控循环单元网络(GRU)。

每个示例都附带了所需的数据内容,确保用户能够快速上手并进行实验。

使用说明

损失函数支持:MESLOSS、交叉熵损失 (Cross-Entropy)

激活函数支持:ReLU、Tanh、Sigmoid、Softmax

数据类型支持:二维数据 float[][] 和四维数据 float[][][,]

池化支持:平均池化、最大池化

其他支持:卷积层 (ConvLayer)、二维卷积层 (Conv2DLayer)、乘法层 (MulLayer)、转置卷积层 (ConvTranspose2DLayer)

部分代码示例

cs 复制代码
//声明两个ConvLayer 和一个激活函数SigmodLayer 
ConvLayer cl1 = new ConvLayer(13, 5, true);
          
SigmodLayer sl = new SigmodLayer();
float lr = 0.5f;
ConvLayer cl2 = new ConvLayer(5, 1, true);

int i = 0,a=0;
while (a < 5000)
{
     
        dynamic ff = cl1.Forward(x);
        ff = sl.Forward(ff);
        ff = cl2.Forward(ff);
       
        //计算误差
        MSELoss mloss = new MSELoss();
       
        var loss = mloss.Forward(ff, y);

        Console.WriteLine("误差:" + loss);

        dynamic grid = mloss.Backward();

        //反传播w2
       
        dynamic w22 = cl2.backweight(grid);

        //反传播W1
        dynamic grid1 = cl2.backward(grid);
        grid1 = sl.Backward(grid1);
        dynamic w11 = cl1.backweight(grid1);
           
       //更新参数
        cl2.weights = Matrix.MatrixSub(cl2.weights, Matrix.multiply(w22.grid, lr));
        cl2.basicData = Matrix.MatrixSub(cl2.basicData, Matrix.multiply(w22.basic, lr));

        cl1.weights = Matrix.MatrixSub(cl1.weights, Matrix.multiply(w11.grid, lr));
        cl1.basicData = Matrix.MatrixSub(cl1.basicData, Matrix.multiply(w11.basic, lr));
        i++;
  
    a++;
}

BP网络运行图

CNN网络95%识别成功率

lstm网络预测PM2.5空气质量

项目地址

Gitee:gitee.com/UDCS/WeaveA...

最后

如果你觉得这篇文章对你有帮助,不妨点个赞支持一下!你的支持是我继续分享知识的动力。如果有任何疑问或需要进一步的帮助,欢迎随时留言。

也可以加入微信公众号 [DotNet技术匠] 社区,与其他热爱技术的同行一起交流心得,共同成长!

优秀是一种习惯,欢迎大家留言学习!

相关推荐
NPE~2 分钟前
自动化工具Drissonpage 保姆级教程(含xpath语法)
运维·后端·爬虫·自动化·网络爬虫·xpath·浏览器自动化
啦啦啦_999915 分钟前
Redis-5-doFormatAsync()方法
数据库·redis·c#
宋小黑37 分钟前
JDK 6到25 全版本网盘合集 (Windows + Mac + Linux)
java·后端
念何架构之路1 小时前
Go进阶之panic
开发语言·后端·golang
先跑起来再说1 小时前
Git 入门到实战:一篇搞懂安装、命令、远程仓库与 IDEA 集成
ide·git·后端·elasticsearch·golang·intellij-idea
Porco.w1 小时前
C#与三菱PLC FX5U通信
网络·c#
码农阿豪1 小时前
Flask应用上下文问题解析与解决方案:从错误日志到完美修复
后端·python·flask
威迪斯特1 小时前
Flask:轻量级Web框架的技术本质与工程实践
前端·数据库·后端·python·flask·开发框架·核心架构
毕设源码-钟学长2 小时前
【开题答辩全过程】以 基于Springboot的扶贫众筹平台为例,包含答辩的问题和答案
java·spring boot·后端
程序员良许3 小时前
三极管推挽输出电路分析
后端·嵌入式