一款 C# 编写的神经网络计算图框架

前言

深度学习技术的不断发展,神经网络在各个领域得到了广泛应用。为了满足 .NET 开发的需求,推荐一款使用 C# 编写的神经网络计算图框架。

框架的使用方法接近 PyTorch,提供了丰富的示例和详细的文档,帮助大家快速上手。

框架介绍

项目完全使用 C# 编写,提供了一个透明的神经网络计算图框架。用户可以查看和理解框架内部的任何实现细节。

框架支持多种网络结构,包括卷积神经网络(CNN)、反向传播网络(BP)、全连接网络(FCN)、长短期记忆网络(LSTM)、卷积长短期记忆网络(ConvLSTM)和门控循环单元网络(GRU)。

每个示例都附带了所需的数据内容,确保用户能够快速上手并进行实验。

使用说明

损失函数支持:MESLOSS、交叉熵损失 (Cross-Entropy)

激活函数支持:ReLU、Tanh、Sigmoid、Softmax

数据类型支持:二维数据 float[][] 和四维数据 float[][][,]

池化支持:平均池化、最大池化

其他支持:卷积层 (ConvLayer)、二维卷积层 (Conv2DLayer)、乘法层 (MulLayer)、转置卷积层 (ConvTranspose2DLayer)

部分代码示例

cs 复制代码
//声明两个ConvLayer 和一个激活函数SigmodLayer 
ConvLayer cl1 = new ConvLayer(13, 5, true);
          
SigmodLayer sl = new SigmodLayer();
float lr = 0.5f;
ConvLayer cl2 = new ConvLayer(5, 1, true);

int i = 0,a=0;
while (a < 5000)
{
     
        dynamic ff = cl1.Forward(x);
        ff = sl.Forward(ff);
        ff = cl2.Forward(ff);
       
        //计算误差
        MSELoss mloss = new MSELoss();
       
        var loss = mloss.Forward(ff, y);

        Console.WriteLine("误差:" + loss);

        dynamic grid = mloss.Backward();

        //反传播w2
       
        dynamic w22 = cl2.backweight(grid);

        //反传播W1
        dynamic grid1 = cl2.backward(grid);
        grid1 = sl.Backward(grid1);
        dynamic w11 = cl1.backweight(grid1);
           
       //更新参数
        cl2.weights = Matrix.MatrixSub(cl2.weights, Matrix.multiply(w22.grid, lr));
        cl2.basicData = Matrix.MatrixSub(cl2.basicData, Matrix.multiply(w22.basic, lr));

        cl1.weights = Matrix.MatrixSub(cl1.weights, Matrix.multiply(w11.grid, lr));
        cl1.basicData = Matrix.MatrixSub(cl1.basicData, Matrix.multiply(w11.basic, lr));
        i++;
  
    a++;
}

BP网络运行图

CNN网络95%识别成功率

lstm网络预测PM2.5空气质量

项目地址

Gitee:gitee.com/UDCS/WeaveA...

最后

如果你觉得这篇文章对你有帮助,不妨点个赞支持一下!你的支持是我继续分享知识的动力。如果有任何疑问或需要进一步的帮助,欢迎随时留言。

也可以加入微信公众号 [DotNet技术匠] 社区,与其他热爱技术的同行一起交流心得,共同成长!

优秀是一种习惯,欢迎大家留言学习!

相关推荐
锋君2 分钟前
Orcale数据库在Asp.Net Core环境下使用EF Core 生成实体
数据库·后端·oracle·asp.net
VX:Fegn08954 分钟前
计算机毕业设计|基于springboot + vue电影院购票管理系统(源码+数据库+文档)
数据库·vue.js·spring boot·后端·课程设计
木头软件7 分钟前
批量将 Word 文档重命名为其标题
开发语言·c#·word
ERROR:998 分钟前
野路子:把海量文档一次性转换成多个PPT
开发语言·人工智能·c#
TT哇11 分钟前
Spring Boot 项目中关于文件上传与访问的配置方案
java·spring boot·后端
程序员阿周13 分钟前
boost、websocketpp、curl 编译(Windows)
后端
踏浪无痕13 分钟前
信不信?一天让你从Java工程师变成Go开发者
后端·go
浪里行舟14 分钟前
使用亚马逊云科技 Elemental MediaConvert 实现 HLS 标准加密
后端
高洁0115 分钟前
DNN案例一步步构建深层神经网络
人工智能·神经网络·算法·机器学习·transformer
韩立学长15 分钟前
Springboot考研自习室预约管理系统1wdeuxh6(程序、源码、数据库、调试部署方案及开发环境)系统界面展示及获取方式置于文档末尾,可供参考。
数据库·spring boot·后端