一款 C# 编写的神经网络计算图框架

前言

深度学习技术的不断发展,神经网络在各个领域得到了广泛应用。为了满足 .NET 开发的需求,推荐一款使用 C# 编写的神经网络计算图框架。

框架的使用方法接近 PyTorch,提供了丰富的示例和详细的文档,帮助大家快速上手。

框架介绍

项目完全使用 C# 编写,提供了一个透明的神经网络计算图框架。用户可以查看和理解框架内部的任何实现细节。

框架支持多种网络结构,包括卷积神经网络(CNN)、反向传播网络(BP)、全连接网络(FCN)、长短期记忆网络(LSTM)、卷积长短期记忆网络(ConvLSTM)和门控循环单元网络(GRU)。

每个示例都附带了所需的数据内容,确保用户能够快速上手并进行实验。

使用说明

损失函数支持:MESLOSS、交叉熵损失 (Cross-Entropy)

激活函数支持:ReLU、Tanh、Sigmoid、Softmax

数据类型支持:二维数据 float[][] 和四维数据 float[][][,]

池化支持:平均池化、最大池化

其他支持:卷积层 (ConvLayer)、二维卷积层 (Conv2DLayer)、乘法层 (MulLayer)、转置卷积层 (ConvTranspose2DLayer)

部分代码示例

cs 复制代码
//声明两个ConvLayer 和一个激活函数SigmodLayer 
ConvLayer cl1 = new ConvLayer(13, 5, true);
          
SigmodLayer sl = new SigmodLayer();
float lr = 0.5f;
ConvLayer cl2 = new ConvLayer(5, 1, true);

int i = 0,a=0;
while (a < 5000)
{
     
        dynamic ff = cl1.Forward(x);
        ff = sl.Forward(ff);
        ff = cl2.Forward(ff);
       
        //计算误差
        MSELoss mloss = new MSELoss();
       
        var loss = mloss.Forward(ff, y);

        Console.WriteLine("误差:" + loss);

        dynamic grid = mloss.Backward();

        //反传播w2
       
        dynamic w22 = cl2.backweight(grid);

        //反传播W1
        dynamic grid1 = cl2.backward(grid);
        grid1 = sl.Backward(grid1);
        dynamic w11 = cl1.backweight(grid1);
           
       //更新参数
        cl2.weights = Matrix.MatrixSub(cl2.weights, Matrix.multiply(w22.grid, lr));
        cl2.basicData = Matrix.MatrixSub(cl2.basicData, Matrix.multiply(w22.basic, lr));

        cl1.weights = Matrix.MatrixSub(cl1.weights, Matrix.multiply(w11.grid, lr));
        cl1.basicData = Matrix.MatrixSub(cl1.basicData, Matrix.multiply(w11.basic, lr));
        i++;
  
    a++;
}

BP网络运行图

CNN网络95%识别成功率

lstm网络预测PM2.5空气质量

项目地址

Gitee:gitee.com/UDCS/WeaveA...

最后

如果你觉得这篇文章对你有帮助,不妨点个赞支持一下!你的支持是我继续分享知识的动力。如果有任何疑问或需要进一步的帮助,欢迎随时留言。

也可以加入微信公众号 [DotNet技术匠] 社区,与其他热爱技术的同行一起交流心得,共同成长!

优秀是一种习惯,欢迎大家留言学习!

相关推荐
Long_poem27 分钟前
【自学笔记】Spring Boot框架技术基础知识点总览-持续更新
spring boot·笔记·后端
SylviaW081 小时前
神经网络八股(三)
人工智能·深度学习·神经网络
时光追逐者1 小时前
推荐几款开源免费的 .NET MAUI 组件库
microsoft·开源·c#·.net·.net core·maui
hong_zc2 小时前
SpringBoot 配置文件
java·spring boot·后端
神马都会亿点点的毛毛张2 小时前
【Docker教程】万字长文详解Docker命令
java·运维·后端·docker·容器
朗迹 - 张伟2 小时前
Golang连接使用SqlCipher
开发语言·后端·golang
m0_748257462 小时前
创建一个简单的spring boot+vue前后端分离项目
vue.js·spring boot·后端
m0_748234902 小时前
Spring Boot项目接收前端参数的11种方式
前端·spring boot·后端
神马都会亿点点的毛毛张2 小时前
【SpringBoot教程】SpringBoot整合Caffeine本地缓存及Spring Cache注解的使用
java·spring boot·后端·spring·缓存·caffeine
紫雾凌寒3 小时前
计算机视觉基础|卷积神经网络:从数学原理到可视化实战
人工智能·深度学习·神经网络·机器学习·计算机视觉·cnn·卷积神经网络