Pytorch学习--神经网络--搭建小实战(手撕CIFAR 10 model structure)和 Sequential 的使用

一、Sequential 的使用方法

在手撕代码中进一步体现
torch.nn.Sequential

二、手撕 CIFAR 10 model structure

手撕代码:

python 复制代码
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.tensorboard import SummaryWriter


class Mary(nn.Module):
    def __init__(self):
        super(Mary,self).__init__()
        self.conv1 = Conv2d(3,32,5,padding=2)
        self.maxpool1 = MaxPool2d(2)
        self.conv2 = Conv2d(32,32,5,padding=2)
        self.maxpool2 = MaxPool2d(2)
        self.conv3 = Conv2d(32,64,5,padding=2)
        self.maxpool3 = MaxPool2d(2)
        self.flatten = Flatten()
        self.linear1 = Linear(1024,64)
        self.linear2 = Linear(64,10)
    def forward(self,x):
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)
        x = self.conv3(x)
        x = self.maxpool3(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = self.linear2(x)
        return x
Yorelee = Mary()
print(Yorelee)
# 检测
input = torch.ones((64,3,32,32))
output = Yorelee(input)
print(output.shape)  #如果是[64,10]即为正确

#用Tensorboard去检测
writer = SummaryWriter("logs")
writer.add_graph(Yorelee,input)
writer.close()

Tensorboard 输出:

使用nn.Sequential的代码:

python 复制代码
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.tensorboard import SummaryWriter


class Mary(nn.Module):
    def __init__(self):
        super(Mary,self).__init__()
        # self.conv1 = Conv2d(3,32,5,padding=2)
        # self.maxpool1 = MaxPool2d(2)
        # self.conv2 = Conv2d(32,32,5,padding=2)
        # self.maxpool2 = MaxPool2d(2)
        # self.conv3 = Conv2d(32,64,5,padding=2)
        # self.maxpool3 = MaxPool2d(2)
        # self.flatten = Flatten()
        # self.linear1 = Linear(1024,64)
        # self.linear2 = Linear(64,10)
        self.model1 = nn.Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )
    def forward(self,x):
        # x = self.conv1(x)
        # x = self.maxpool1(x)
        # x = self.conv2(x)
        # x = self.maxpool2(x)
        # x = self.conv3(x)
        # x = self.maxpool3(x)
        # x = self.flatten(x)
        # x = self.linear1(x)
        # x = self.linear2(x)
        x = self.model1(x)
        return x
Yorelee = Mary()
print(Yorelee)
# 检测
input = torch.ones((64,3,32,32))
output = Yorelee(input)
print(output.shape)  #如果是[64,10]即为正确

#用Tensorboard去检测
writer = SummaryWriter("logs")
writer.add_graph(Yorelee,input)
writer.close()
相关推荐
wwlsm_zql4 分钟前
京津冀工业智能体赋能:重构产业链升级新篇章
人工智能·重构
lzjava202416 分钟前
Spring AI实现一个智能客服
java·人工智能·spring
BreezeJuvenile18 分钟前
外设模块学习(10)——红外避障模块(STM32)
stm32·单片机·学习·红外避障模块
codeyanwu22 分钟前
SQL 学习笔记
笔记·sql·学习
hweiyu0025 分钟前
数据挖掘 miRNA调节网络的构建(视频教程)
人工智能·数据挖掘
wshlp12345637 分钟前
deepseek api 灵活使用
python
飞哥数智坊39 分钟前
AI Coding 新手常见的3大误区
人工智能·ai编程
3Bronze1Pyramid39 分钟前
深度学习参数优化
人工智能·深度学习
71-341 分钟前
C语言——函数声明、定义、调用
c语言·笔记·学习·其他
笨笨没好名字44 分钟前
自然语言处理(NLP)之文本预处理:词元化——以《时间机器》文本数据集为例
人工智能·自然语言处理