Pytorch学习--神经网络--搭建小实战(手撕CIFAR 10 model structure)和 Sequential 的使用

一、Sequential 的使用方法

在手撕代码中进一步体现
torch.nn.Sequential

二、手撕 CIFAR 10 model structure

手撕代码:

python 复制代码
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.tensorboard import SummaryWriter


class Mary(nn.Module):
    def __init__(self):
        super(Mary,self).__init__()
        self.conv1 = Conv2d(3,32,5,padding=2)
        self.maxpool1 = MaxPool2d(2)
        self.conv2 = Conv2d(32,32,5,padding=2)
        self.maxpool2 = MaxPool2d(2)
        self.conv3 = Conv2d(32,64,5,padding=2)
        self.maxpool3 = MaxPool2d(2)
        self.flatten = Flatten()
        self.linear1 = Linear(1024,64)
        self.linear2 = Linear(64,10)
    def forward(self,x):
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)
        x = self.conv3(x)
        x = self.maxpool3(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = self.linear2(x)
        return x
Yorelee = Mary()
print(Yorelee)
# 检测
input = torch.ones((64,3,32,32))
output = Yorelee(input)
print(output.shape)  #如果是[64,10]即为正确

#用Tensorboard去检测
writer = SummaryWriter("logs")
writer.add_graph(Yorelee,input)
writer.close()

Tensorboard 输出:

使用nn.Sequential的代码:

python 复制代码
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.tensorboard import SummaryWriter


class Mary(nn.Module):
    def __init__(self):
        super(Mary,self).__init__()
        # self.conv1 = Conv2d(3,32,5,padding=2)
        # self.maxpool1 = MaxPool2d(2)
        # self.conv2 = Conv2d(32,32,5,padding=2)
        # self.maxpool2 = MaxPool2d(2)
        # self.conv3 = Conv2d(32,64,5,padding=2)
        # self.maxpool3 = MaxPool2d(2)
        # self.flatten = Flatten()
        # self.linear1 = Linear(1024,64)
        # self.linear2 = Linear(64,10)
        self.model1 = nn.Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )
    def forward(self,x):
        # x = self.conv1(x)
        # x = self.maxpool1(x)
        # x = self.conv2(x)
        # x = self.maxpool2(x)
        # x = self.conv3(x)
        # x = self.maxpool3(x)
        # x = self.flatten(x)
        # x = self.linear1(x)
        # x = self.linear2(x)
        x = self.model1(x)
        return x
Yorelee = Mary()
print(Yorelee)
# 检测
input = torch.ones((64,3,32,32))
output = Yorelee(input)
print(output.shape)  #如果是[64,10]即为正确

#用Tensorboard去检测
writer = SummaryWriter("logs")
writer.add_graph(Yorelee,input)
writer.close()
相关推荐
腾视科技1 小时前
腾视科技TS-SG-SM7系列AI算力模组:32TOPS算力引擎,开启边缘智能新纪元
人工智能·科技
极新1 小时前
深势科技生命科学高级业务架构师孟月:AI4S 赋能生命科学研发,数智化平台的实践与落地 | 2025极新AIGC峰会演讲实录
人工智能
落羽凉笙6 小时前
Python学习笔记(3)|数据类型、变量与运算符:夯实基础,从入门到避坑(附图解+代码)
笔记·python·学习
Light606 小时前
破局而立:制造业软件企业的模式重构与AI赋能新路径
人工智能·云原生·工业软件·商业模式创新·ai赋能·人机协同·制造业软件
Quintus五等升6 小时前
深度学习①|线性回归的实现
人工智能·python·深度学习·学习·机器学习·回归·线性回归
天远Date Lab6 小时前
Python实战:对接天远数据手机号码归属地API,实现精准用户分群与本地化运营
大数据·开发语言·python
natide6 小时前
text-generateion-webui模型加载器(Model Loaders)选项
人工智能·llama
野生的码农6 小时前
码农的妇产科实习记录
android·java·人工智能
TechubNews7 小时前
2026 年观察名单:基于 a16z「重大构想」,详解稳定币、RWA 及 AI Agent 等 8 大流行趋势
大数据·人工智能·区块链
哈里谢顿7 小时前
Python异常链:谁才是罪魁祸首?一探"The above exception"的时间顺序
python