Bert完形填空

转载自:| 03_language_model/03_Bert完形填空.ipynb | 基于transformers使用Bert模型做完形填空 |Open In Colab |

完形填空

利用语言模型,可以完成完形填空(fill mask),预测缺失的单词。

当前,效果最好的语言模型是Bert系列的预训练语言模型。

python 复制代码
!pip install transformers
python 复制代码
import os

from transformers import pipeline

os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
model_name = "hfl/chinese-macbert-base"

nlp = pipeline("fill-mask",
               model=model_name,
               tokenizer=model_name,
               device=-1,  # gpu device id
               )
from pprint import pprint

pprint(nlp(f"明天天{nlp.tokenizer.mask_token}很好?"))
print("*" * 42)
pprint(nlp(f"明天心{nlp.tokenizer.mask_token}很好?"))
print("*" * 42)
pprint(nlp(f"张亮在哪里任{nlp.tokenizer.mask_token}?"))
print("*" * 42)
pprint(nlp(f"少先队员{nlp.tokenizer.mask_token}该为老人让座位。"))

模型默认保存在:~/.cache/huggingface/transformers

不通过pipeline,可以自己写预测逻辑:

python 复制代码
from transformers import AutoModelWithLMHead, AutoTokenizer
import torch

# tokenizer = AutoTokenizer.from_pretrained("distilbert-base-cased")
# model = AutoModelWithLMHead.from_pretrained("distilbert-base-cased")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelWithLMHead.from_pretrained(model_name)

sequence = f"明天天{nlp.tokenizer.mask_token}很好."
input = tokenizer.encode(sequence, return_tensors="pt")
mask_token_index = torch.where(input == tokenizer.mask_token_id)[1]
token_logits = model(input).logits
mask_token_logits = token_logits[0, mask_token_index, :]
top_5_tokens = torch.topk(mask_token_logits, 5, dim=1).indices[0].tolist()
for token in top_5_tokens:
    print(sequence.replace(tokenizer.mask_token, tokenizer.decode([token])))
相关推荐
冰蓝蓝36 分钟前
深度学习中的注意力机制:解锁智能模型的新视角
人工智能·深度学习
黄公子学安全1 小时前
Java的基础概念(一)
java·开发语言·python
程序员一诺1 小时前
【Python使用】嘿马python高级进阶全体系教程第10篇:静态Web服务器-返回固定页面数据,1. 开发自己的静态Web服务器【附代码文档】
后端·python
小木_.2 小时前
【Python 图片下载器】一款专门为爬虫制作的图片下载器,多线程下载,速度快,支持续传/图片缩放/图片压缩/图片转换
爬虫·python·学习·分享·批量下载·图片下载器
wydxry2 小时前
LoRA(Low-Rank Adaptation)模型微调
深度学习
Jiude2 小时前
算法题题解记录——双变量问题的 “枚举右,维护左”
python·算法·面试
唐小旭2 小时前
python3.6搭建pytorch环境
人工智能·pytorch·python
是十一月末3 小时前
Opencv之对图片的处理和运算
人工智能·python·opencv·计算机视觉
爱学测试的李木子3 小时前
Python自动化测试的2种思路
开发语言·软件测试·python
kitsch0x974 小时前
工具学习_Conan 安装第三方库
开发语言·python·学习