Bert完形填空

转载自:| 03_language_model/03_Bert完形填空.ipynb | 基于transformers使用Bert模型做完形填空 |Open In Colab |

完形填空

利用语言模型,可以完成完形填空(fill mask),预测缺失的单词。

当前,效果最好的语言模型是Bert系列的预训练语言模型。

python 复制代码
!pip install transformers
python 复制代码
import os

from transformers import pipeline

os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
model_name = "hfl/chinese-macbert-base"

nlp = pipeline("fill-mask",
               model=model_name,
               tokenizer=model_name,
               device=-1,  # gpu device id
               )
from pprint import pprint

pprint(nlp(f"明天天{nlp.tokenizer.mask_token}很好?"))
print("*" * 42)
pprint(nlp(f"明天心{nlp.tokenizer.mask_token}很好?"))
print("*" * 42)
pprint(nlp(f"张亮在哪里任{nlp.tokenizer.mask_token}?"))
print("*" * 42)
pprint(nlp(f"少先队员{nlp.tokenizer.mask_token}该为老人让座位。"))

模型默认保存在:~/.cache/huggingface/transformers

不通过pipeline,可以自己写预测逻辑:

python 复制代码
from transformers import AutoModelWithLMHead, AutoTokenizer
import torch

# tokenizer = AutoTokenizer.from_pretrained("distilbert-base-cased")
# model = AutoModelWithLMHead.from_pretrained("distilbert-base-cased")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelWithLMHead.from_pretrained(model_name)

sequence = f"明天天{nlp.tokenizer.mask_token}很好."
input = tokenizer.encode(sequence, return_tensors="pt")
mask_token_index = torch.where(input == tokenizer.mask_token_id)[1]
token_logits = model(input).logits
mask_token_logits = token_logits[0, mask_token_index, :]
top_5_tokens = torch.topk(mask_token_logits, 5, dim=1).indices[0].tolist()
for token in top_5_tokens:
    print(sequence.replace(tokenizer.mask_token, tokenizer.decode([token])))
相关推荐
用户27784491049932 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
JavaEdge在掘金4 小时前
ssl.SSLCertVerificationError报错解决方案
python
我不会编程5555 小时前
Python Cookbook-5.1 对字典排序
开发语言·数据结构·python
老歌老听老掉牙5 小时前
平面旋转与交线投影夹角计算
python·线性代数·平面·sympy
满怀10155 小时前
Python入门(7):模块
python
无名之逆5 小时前
Rust 开发提效神器:lombok-macros 宏库
服务器·开发语言·前端·数据库·后端·python·rust
你觉得2055 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
啊喜拔牙6 小时前
1. hadoop 集群的常用命令
java·大数据·开发语言·python·scala
hyshhhh6 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
Listennnn7 小时前
优雅的理解神经网络中的“分段线性单元”,解剖前向和反向传播
人工智能·深度学习·神经网络