Transformer和BERT的区别

Transformer和BERT的区别比较表:

两者的位置编码:

为什么要对位置进行编码?

Attention提取特征的时候,可以获取全局每个词对之间的关系,但是并没有显式保留时序信息,或者说位置信息。就算打乱序列中token的顺序,最后所得到的Attention结果也不会变,这会丢失语言中的时序信息,因此需要额外对位置进行编码以引入时序信息。

Position Embedding in Transformer

在Transformer中,位置编码是由sin /cos sin/cossin/cos函数生成的固定值。

具体做法:用不同频率的正余弦函数对位置信息进行编码,位置编码向量的维度与文本编码向量的维度相同,即dmodeld_{model}dmodel。因此二者可以直接相加作为token最终的编码向量。

pos表示位置,i 表示所在维度。

即使测试集中某些样本超出了最大文本长度,这种编码方式仍然可以获得有效的相对位置表示。

Position Embedding in BERT

在BERT中,与一般的词嵌入编码类似,位置编码也是随机生成且可训练的,维度为[seq_length, width],其中seq_length代表序列长度,width代表每一个token对应的向量长度。

从实现上可以看到,BERT中将位置编码创建为一个tensorflow变量,并将其broadcast到与词嵌入编码同维度后相加。

cpp 复制代码
with tf.control_dependencies([assert_op]):
      full_position_embeddings = tf.get_variable(
          name=position_embedding_name,
          shape=[max_position_embeddings, width],
          initializer=create_initializer(initializer_range))

      # 这里position embedding是可学习的参数,[max_position_embeddings, width]
      # 但是通常实际输入序列没有达到max_position_embeddings
      # 所以为了提高训练速度,使用tf.slice取出句子长度的embedding
      position_embeddings = tf.slice(full_position_embeddings, [0, 0],
                                     [seq_length, -1])
      num_dims = len(output.shape.as_list())

      # word embedding之后的tensor是[batch_size, seq_length, width]
      # 因为位置编码是与输入内容无关,它的shape总是[seq_length, width]
      # 我们无法把位置Embedding加到word embedding上
      # 因此我们需要扩展位置编码为[1, seq_length, width]
      # 然后就能通过broadcasting加上去了。
      position_broadcast_shape = []
      for _ in range(num_dims - 2):
        position_broadcast_shape.append(1)
      position_broadcast_shape.extend([seq_length, width])
      position_embeddings = tf.reshape(position_embeddings,
                                       position_broadcast_shape)
      output += position_embeddings

两者之间的区别

Transformer的位置编码是一个固定值,因此只能标记位置,但是不能标记这个位置有什么用。

BERT的位置编码是可学习的Embedding,因此不仅可以标记位置,还可以学习到这个位置有什么用。

BERT选择这么做的原因可能是,相比于Transformer,BERT训练所用的数据量充足,完全可以让模型自己学习。

如何延拓BERT的位置编码?

我们知道,BERT模型最多只能处理512个token的文本,其原因在于BERT使用了随机初始化训练出来的绝对位置编码,最大位置设为为512,若是文本长于512便无位置编码可用。

另一方面, 复杂度使得长序列的显存用量极大,一般显卡就连finetune也做不到。

苏神提出了一种层次分解的方法将BERT的位置编码最多可以延拓至26万。

具体内容可自行阅读苏神博客

层次分解位置编码,让BERT可以处理超长文本

相关推荐
davenian2 小时前
DeepSeek-R1 论文. Reinforcement Learning 通过强化学习激励大型语言模型的推理能力
人工智能·深度学习·语言模型·deepseek
CM莫问3 小时前
什么是门控循环单元?
人工智能·pytorch·python·rnn·深度学习·算法·gru
CodeLinghu4 小时前
《LLM大语言模型+RAG实战+Langchain+ChatGLM-4+Transformer》
语言模型·langchain·transformer
kakaZhui6 小时前
【llm对话系统】大模型 Llama 源码分析之 LoRA 微调
pytorch·深度学习·chatgpt·aigc·llama
eso19836 小时前
深度学习模型在汽车自动驾驶领域的应用
深度学习·自动驾驶·汽车
梦云澜7 小时前
论文阅读(九):通过概率图模型建立连锁不平衡模型和进行关联研究:最新进展访问之旅
论文阅读·人工智能·深度学习
prince_zxill8 小时前
机器学习优化算法:从梯度下降到Adam及其变种
人工智能·深度学习
paradoxjun9 小时前
YOLOv8源码修改(4)- 实现YOLOv8模型剪枝(任意YOLO模型的简单剪枝)
深度学习·yolo·目标检测·剪枝
视觉语言导航9 小时前
构建具身智能体的时空宇宙!GRUtopia:畅想城市规模下通用机器人的生活图景
人工智能·深度学习·具身智能
纠结哥_Shrek12 小时前
pytorch基于 Transformer 预训练模型的方法实现词嵌入(tiansz/bert-base-chinese)
pytorch·bert·transformer