从0开始深度学习(27)——卷积神经网络(LeNet)

1 LeNet神经网络

LeNet是最早的卷积神经网络之一,由Yann LeCun等人在1990年代提出,并以其名字命名。最初,LeNet被设计用于手写数字识别,最著名的应用是在美国的邮政系统中识别手写邮政编码。LeNet架构的成功证明了卷积神经网络在解决实际问题中的有效性,为后续更复杂、更强大的CNN模型的发展奠定了基础。

结构如下:

先用pytorch代码实现该结构:

python 复制代码
import torch
from torch import nn

net=nn.Sequential(
    nn.Conv2d(1,6,kernel_size=5,padding=2),
    nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2,stride=2),
    nn.Conv2d(6,16,kernel_size=5),
    nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2,stride=2),
    nn.Flatten(),
    nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10)
)

我们知道手写数字识别数据集的数据,都是 28 × 28 28\times28 28×28的灰度图,下面我们将输入一个 28 × 28 28\times28 28×28的矩阵,看看经过这个模型过后,会输出什么。

python 复制代码
x=torch.rand(size=(1,1,28,28))
for layer in net:
    x=layer(x)
    print(layer.__class__.__name__,"output shape:",x.shape)
    

运行结果:

可以发现最后输出为 1 × 10 1\times10 1×10的张量,该维度与我们需要的结果分类数(0~9)匹配。

2 模型训练

检测一下LeNet-5在Fashion-MNIST数据集上的表现。

python 复制代码
import torch
from torch import nn,optim
import torchvision
from torch.utils import data
from torchvision import transforms,datasets
from torch.utils.data import DataLoader
from d2l import torch as d2l
import matplotlib.pyplot as plt

net=nn.Sequential(
    nn.Conv2d(1,6,kernel_size=5,padding=2),
    nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2,stride=2),
    nn.Conv2d(6,16,kernel_size=5),
    nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2,stride=2),
    nn.Flatten(),
    nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10)
)

batch_size=128

# 数据预处理
transform = transforms.Compose([
    transforms.ToTensor(),  
    transforms.Normalize((0.5,), (0.5,))  # 标准化到[-1, 1]区间,加快计算
])

# 加载Fashion-MNIST数据集
train_dataset = datasets.FashionMNIST(root='D:/DL_Data/', train=True, download=False, transform=transform)
test_dataset = datasets.FashionMNIST(root='D:/DL_Data/', train=False, download=False, transform=transform)

train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)

# 自定义 try_gpu 函数
def try_gpu(i=0):
    if torch.cuda.device_count() >= i + 1:
        return torch.device(f'cuda:{i}')
    return torch.device('cpu')

def evaluate_acc_gpu(net, data_iter, device=None):
    if isinstance(net, nn.Module):
        net.eval()
        if not device:
            device = next(iter(net.parameters())).device
        metric = d2l.Accumulator(2)
        with torch.no_grad():
            for X, y in data_iter:
                if isinstance(X, list):
                    X = [x.to(device) for x in X]
                else:
                    X = X.to(device)
                y = y.to(device)
                temp = net(X)
                acc = accuracy(temp, y)
                metric.add(acc, y.numel())
    return metric[0] / metric[1]

def train(net, train_iter, test_iter, num_epochs, lr, device, train_acc_list,test_acc_list):
    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            nn.init.xavier_uniform_(m.weight)
    net.apply(init_weights)
    print("training on", device)
    net.to(device)
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()
    timer = d2l.Timer()
    train_acc_list = train_acc_list
    test_acc_list = test_acc_list
    print("init train_list nad test_list is ok")

    for epoch in range(num_epochs):
        metric = d2l.Accumulator(3)
        net.train()
        for i, (X, y) in enumerate(train_iter):
            optimizer.zero_grad()
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            optimizer.step()
            with torch.no_grad():
                metric.add(l * X.shape[0], accuracy(y_hat, y), X.shape[0])
        train_l = metric[0] / metric[2]
        train_acc = metric[1] / metric[2]
        train_acc_list.append(train_acc)
        print(f"epoch: {epoch+1}, train_l: {train_l:.3f}, train_acc: {train_acc:.3f}")
        test_acc = evaluate_acc_gpu(net, test_iter)
        test_acc_list.append(test_acc)
        print(f"test acc: {test_acc:.3f}")
    return train_acc_list,test_acc_list

    


# 实现 accuracy 函数
def accuracy(y_hat, y):
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
        y_hat = y_hat.argmax(axis=1)
    cmp = y_hat.type(y.dtype) == y
    return float(cmp.type(y.dtype).sum())
    
lr, num_epochs = 0.9, 10
train_acc_list=[]
test_acc_list=[]

train_acc_list,test_acc_list=train(net, train_loader, test_loader, num_epochs, lr, try_gpu(),train_acc_list,test_acc_list)

print(f"num_epochs: {num_epochs}")
print(f"train_acc_list: {train_acc_list}")
print(f"test_acc_list: {test_acc_list}")

try:
    # 绘制训练和测试准确率的折线图
    epochs = range(1, num_epochs + 1)
    plt.plot(epochs, train_acc_list, 'b', label='Training Accuracy')
    plt.plot(epochs, test_acc_list, 'r', label='Testing Accuracy')
    plt.title('Training and Testing Accuracy')
    plt.xlabel('Epochs')
    plt.ylabel('Accuracy')
    plt.legend()
    plt.show()
except Exception as e:
    print(f"An error occurred: {e}")

运行结果

分析图像可以看出,准确率还没有稳定,说明还有提升空间,可以添加epoch继续训练以获得更准的分类效果

相关推荐
Moniane2 小时前
A2A+MCP构建智能体协作生态:下一代分布式人工智能架构解析
人工智能·分布式·架构
sendnews3 小时前
红松小课首次亮相北京老博会,四大业务矩阵赋能退休生活提质升级
人工智能·物联网
停停的茶3 小时前
深度学习——图像分割
人工智能·深度学习
MIXLLRED4 小时前
自动驾驶技术全景解析:从感知、决策到控制的演进与挑战
人工智能·机器学习·自动驾驶
金融Tech趋势派4 小时前
企业微信AI SCRM推荐:从技术适配与场景功能实践进行评估
大数据·人工智能
Wnq100724 小时前
AI 在法律咨询服务中的革命性变化:技术赋能与生态重构
人工智能·职场和发展·重构·分类·数据分析·全文检索·创业创新
茶杯6754 小时前
极睿iClip易视频:2025年AI混剪领域的革新工具,重构电商内容生产逻辑
人工智能
一点一木4 小时前
🚀 2025 年 10 月 GitHub 十大热门项目排行榜 🔥
前端·人工智能·github
湘-枫叶情缘4 小时前
程序与工业:从附庸到共生,在AI浪潮下的高维重构
人工智能·重构