从0开始深度学习(27)——卷积神经网络(LeNet)

1 LeNet神经网络

LeNet是最早的卷积神经网络之一,由Yann LeCun等人在1990年代提出,并以其名字命名。最初,LeNet被设计用于手写数字识别,最著名的应用是在美国的邮政系统中识别手写邮政编码。LeNet架构的成功证明了卷积神经网络在解决实际问题中的有效性,为后续更复杂、更强大的CNN模型的发展奠定了基础。

结构如下:

先用pytorch代码实现该结构:

python 复制代码
import torch
from torch import nn

net=nn.Sequential(
    nn.Conv2d(1,6,kernel_size=5,padding=2),
    nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2,stride=2),
    nn.Conv2d(6,16,kernel_size=5),
    nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2,stride=2),
    nn.Flatten(),
    nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10)
)

我们知道手写数字识别数据集的数据,都是 28 × 28 28\times28 28×28的灰度图,下面我们将输入一个 28 × 28 28\times28 28×28的矩阵,看看经过这个模型过后,会输出什么。

python 复制代码
x=torch.rand(size=(1,1,28,28))
for layer in net:
    x=layer(x)
    print(layer.__class__.__name__,"output shape:",x.shape)
    

运行结果:

可以发现最后输出为 1 × 10 1\times10 1×10的张量,该维度与我们需要的结果分类数(0~9)匹配。

2 模型训练

检测一下LeNet-5在Fashion-MNIST数据集上的表现。

python 复制代码
import torch
from torch import nn,optim
import torchvision
from torch.utils import data
from torchvision import transforms,datasets
from torch.utils.data import DataLoader
from d2l import torch as d2l
import matplotlib.pyplot as plt

net=nn.Sequential(
    nn.Conv2d(1,6,kernel_size=5,padding=2),
    nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2,stride=2),
    nn.Conv2d(6,16,kernel_size=5),
    nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2,stride=2),
    nn.Flatten(),
    nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10)
)

batch_size=128

# 数据预处理
transform = transforms.Compose([
    transforms.ToTensor(),  
    transforms.Normalize((0.5,), (0.5,))  # 标准化到[-1, 1]区间,加快计算
])

# 加载Fashion-MNIST数据集
train_dataset = datasets.FashionMNIST(root='D:/DL_Data/', train=True, download=False, transform=transform)
test_dataset = datasets.FashionMNIST(root='D:/DL_Data/', train=False, download=False, transform=transform)

train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)

# 自定义 try_gpu 函数
def try_gpu(i=0):
    if torch.cuda.device_count() >= i + 1:
        return torch.device(f'cuda:{i}')
    return torch.device('cpu')

def evaluate_acc_gpu(net, data_iter, device=None):
    if isinstance(net, nn.Module):
        net.eval()
        if not device:
            device = next(iter(net.parameters())).device
        metric = d2l.Accumulator(2)
        with torch.no_grad():
            for X, y in data_iter:
                if isinstance(X, list):
                    X = [x.to(device) for x in X]
                else:
                    X = X.to(device)
                y = y.to(device)
                temp = net(X)
                acc = accuracy(temp, y)
                metric.add(acc, y.numel())
    return metric[0] / metric[1]

def train(net, train_iter, test_iter, num_epochs, lr, device, train_acc_list,test_acc_list):
    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            nn.init.xavier_uniform_(m.weight)
    net.apply(init_weights)
    print("training on", device)
    net.to(device)
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()
    timer = d2l.Timer()
    train_acc_list = train_acc_list
    test_acc_list = test_acc_list
    print("init train_list nad test_list is ok")

    for epoch in range(num_epochs):
        metric = d2l.Accumulator(3)
        net.train()
        for i, (X, y) in enumerate(train_iter):
            optimizer.zero_grad()
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            optimizer.step()
            with torch.no_grad():
                metric.add(l * X.shape[0], accuracy(y_hat, y), X.shape[0])
        train_l = metric[0] / metric[2]
        train_acc = metric[1] / metric[2]
        train_acc_list.append(train_acc)
        print(f"epoch: {epoch+1}, train_l: {train_l:.3f}, train_acc: {train_acc:.3f}")
        test_acc = evaluate_acc_gpu(net, test_iter)
        test_acc_list.append(test_acc)
        print(f"test acc: {test_acc:.3f}")
    return train_acc_list,test_acc_list

    


# 实现 accuracy 函数
def accuracy(y_hat, y):
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
        y_hat = y_hat.argmax(axis=1)
    cmp = y_hat.type(y.dtype) == y
    return float(cmp.type(y.dtype).sum())
    
lr, num_epochs = 0.9, 10
train_acc_list=[]
test_acc_list=[]

train_acc_list,test_acc_list=train(net, train_loader, test_loader, num_epochs, lr, try_gpu(),train_acc_list,test_acc_list)

print(f"num_epochs: {num_epochs}")
print(f"train_acc_list: {train_acc_list}")
print(f"test_acc_list: {test_acc_list}")

try:
    # 绘制训练和测试准确率的折线图
    epochs = range(1, num_epochs + 1)
    plt.plot(epochs, train_acc_list, 'b', label='Training Accuracy')
    plt.plot(epochs, test_acc_list, 'r', label='Testing Accuracy')
    plt.title('Training and Testing Accuracy')
    plt.xlabel('Epochs')
    plt.ylabel('Accuracy')
    plt.legend()
    plt.show()
except Exception as e:
    print(f"An error occurred: {e}")

运行结果

分析图像可以看出,准确率还没有稳定,说明还有提升空间,可以添加epoch继续训练以获得更准的分类效果

相关推荐
桃花键神22 分钟前
AI可信论坛亮点:合合信息分享视觉内容安全技术前沿
人工智能
野蛮的大西瓜43 分钟前
开源呼叫中心中,如何将ASR与IVR菜单结合,实现动态的IVR交互
人工智能·机器人·自动化·音视频·信息与通信
CountingStars6191 小时前
目标检测常用评估指标(metrics)
人工智能·目标检测·目标跟踪
tangjunjun-owen1 小时前
第四节:GLM-4v-9b模型的tokenizer源码解读
人工智能·glm-4v-9b·多模态大模型教程
冰蓝蓝1 小时前
深度学习中的注意力机制:解锁智能模型的新视角
人工智能·深度学习
橙子小哥的代码世界1 小时前
【计算机视觉基础CV-图像分类】01- 从历史源头到深度时代:一文读懂计算机视觉的进化脉络、核心任务与产业蓝图
人工智能·计算机视觉
新加坡内哥谈技术2 小时前
苏黎世联邦理工学院与加州大学伯克利分校推出MaxInfoRL:平衡内在与外在探索的全新强化学习框架
大数据·人工智能·语言模型
fanstuck3 小时前
Prompt提示工程上手指南(七)Prompt编写实战-基于智能客服问答系统下的Prompt编写
人工智能·数据挖掘·openai
lovelin+v175030409663 小时前
安全性升级:API接口在零信任架构下的安全防护策略
大数据·数据库·人工智能·爬虫·数据分析
wydxry3 小时前
LoRA(Low-Rank Adaptation)模型微调
深度学习