从0开始深度学习(27)——卷积神经网络(LeNet)

1 LeNet神经网络

LeNet是最早的卷积神经网络之一,由Yann LeCun等人在1990年代提出,并以其名字命名。最初,LeNet被设计用于手写数字识别,最著名的应用是在美国的邮政系统中识别手写邮政编码。LeNet架构的成功证明了卷积神经网络在解决实际问题中的有效性,为后续更复杂、更强大的CNN模型的发展奠定了基础。

结构如下:

先用pytorch代码实现该结构:

python 复制代码
import torch
from torch import nn

net=nn.Sequential(
    nn.Conv2d(1,6,kernel_size=5,padding=2),
    nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2,stride=2),
    nn.Conv2d(6,16,kernel_size=5),
    nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2,stride=2),
    nn.Flatten(),
    nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10)
)

我们知道手写数字识别数据集的数据,都是 28 × 28 28\times28 28×28的灰度图,下面我们将输入一个 28 × 28 28\times28 28×28的矩阵,看看经过这个模型过后,会输出什么。

python 复制代码
x=torch.rand(size=(1,1,28,28))
for layer in net:
    x=layer(x)
    print(layer.__class__.__name__,"output shape:",x.shape)
    

运行结果:

可以发现最后输出为 1 × 10 1\times10 1×10的张量,该维度与我们需要的结果分类数(0~9)匹配。

2 模型训练

检测一下LeNet-5在Fashion-MNIST数据集上的表现。

python 复制代码
import torch
from torch import nn,optim
import torchvision
from torch.utils import data
from torchvision import transforms,datasets
from torch.utils.data import DataLoader
from d2l import torch as d2l
import matplotlib.pyplot as plt

net=nn.Sequential(
    nn.Conv2d(1,6,kernel_size=5,padding=2),
    nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2,stride=2),
    nn.Conv2d(6,16,kernel_size=5),
    nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2,stride=2),
    nn.Flatten(),
    nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10)
)

batch_size=128

# 数据预处理
transform = transforms.Compose([
    transforms.ToTensor(),  
    transforms.Normalize((0.5,), (0.5,))  # 标准化到[-1, 1]区间,加快计算
])

# 加载Fashion-MNIST数据集
train_dataset = datasets.FashionMNIST(root='D:/DL_Data/', train=True, download=False, transform=transform)
test_dataset = datasets.FashionMNIST(root='D:/DL_Data/', train=False, download=False, transform=transform)

train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)

# 自定义 try_gpu 函数
def try_gpu(i=0):
    if torch.cuda.device_count() >= i + 1:
        return torch.device(f'cuda:{i}')
    return torch.device('cpu')

def evaluate_acc_gpu(net, data_iter, device=None):
    if isinstance(net, nn.Module):
        net.eval()
        if not device:
            device = next(iter(net.parameters())).device
        metric = d2l.Accumulator(2)
        with torch.no_grad():
            for X, y in data_iter:
                if isinstance(X, list):
                    X = [x.to(device) for x in X]
                else:
                    X = X.to(device)
                y = y.to(device)
                temp = net(X)
                acc = accuracy(temp, y)
                metric.add(acc, y.numel())
    return metric[0] / metric[1]

def train(net, train_iter, test_iter, num_epochs, lr, device, train_acc_list,test_acc_list):
    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            nn.init.xavier_uniform_(m.weight)
    net.apply(init_weights)
    print("training on", device)
    net.to(device)
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()
    timer = d2l.Timer()
    train_acc_list = train_acc_list
    test_acc_list = test_acc_list
    print("init train_list nad test_list is ok")

    for epoch in range(num_epochs):
        metric = d2l.Accumulator(3)
        net.train()
        for i, (X, y) in enumerate(train_iter):
            optimizer.zero_grad()
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            optimizer.step()
            with torch.no_grad():
                metric.add(l * X.shape[0], accuracy(y_hat, y), X.shape[0])
        train_l = metric[0] / metric[2]
        train_acc = metric[1] / metric[2]
        train_acc_list.append(train_acc)
        print(f"epoch: {epoch+1}, train_l: {train_l:.3f}, train_acc: {train_acc:.3f}")
        test_acc = evaluate_acc_gpu(net, test_iter)
        test_acc_list.append(test_acc)
        print(f"test acc: {test_acc:.3f}")
    return train_acc_list,test_acc_list

    


# 实现 accuracy 函数
def accuracy(y_hat, y):
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
        y_hat = y_hat.argmax(axis=1)
    cmp = y_hat.type(y.dtype) == y
    return float(cmp.type(y.dtype).sum())
    
lr, num_epochs = 0.9, 10
train_acc_list=[]
test_acc_list=[]

train_acc_list,test_acc_list=train(net, train_loader, test_loader, num_epochs, lr, try_gpu(),train_acc_list,test_acc_list)

print(f"num_epochs: {num_epochs}")
print(f"train_acc_list: {train_acc_list}")
print(f"test_acc_list: {test_acc_list}")

try:
    # 绘制训练和测试准确率的折线图
    epochs = range(1, num_epochs + 1)
    plt.plot(epochs, train_acc_list, 'b', label='Training Accuracy')
    plt.plot(epochs, test_acc_list, 'r', label='Testing Accuracy')
    plt.title('Training and Testing Accuracy')
    plt.xlabel('Epochs')
    plt.ylabel('Accuracy')
    plt.legend()
    plt.show()
except Exception as e:
    print(f"An error occurred: {e}")

运行结果

分析图像可以看出,准确率还没有稳定,说明还有提升空间,可以添加epoch继续训练以获得更准的分类效果

相关推荐
摆烂工程师8 分钟前
Claude Code 落地实践的工作简易流程
人工智能·claude·敏捷开发
CoovallyAIHub10 分钟前
YOLOv13都来了,目标检测还卷得动吗?别急,还有这些新方向!
深度学习·算法·计算机视觉
亚马逊云开发者10 分钟前
得心应手:探索 MCP 与数据库结合的应用场景
人工智能
大明哥_15 分钟前
100 个 Coze 精品案例 - 小红书爆款图文,单篇点赞 20000+,用 Coze 智能体一键生成有声儿童绘本!
人工智能
聚客AI15 分钟前
🚀拒绝试错成本!企业接入MCP协议的避坑清单
人工智能·掘金·日新计划·mcp
rocksun1 小时前
GraphRAG vs. RAG:差异详解
人工智能
一块plus1 小时前
什么是去中心化 AI?区块链驱动智能的初学者指南
人工智能·后端·算法
txwtech1 小时前
第10.4篇 使用预训练的目标检测网络
人工智能·计算机视觉·目标跟踪
羊小猪~~1 小时前
【NLP入门系列四】评论文本分类入门案例
人工智能·自然语言处理·分类
roman_日积跬步-终至千里1 小时前
【学习线路】机器学习线路概述与内容关键点说明
人工智能·学习·机器学习