二维椭圆拟合算法及推导过程

目录

1、间接平差法

该方法忽略了半长轴相对于 x x x轴的旋转角度,需要较好的初值才能拟合成功。


2、最小二乘法

一般斜椭圆具有5个参数,即椭圆中心坐标 ( x 0 , y 0 ) ( x_0 , y_0 ) (x0,y0) (x_0,y_0),椭圆长径和短径 R 1 , R 2 R_1,R_2 R1,R2以及坐标轴旋转的角度 ϕ \phi ϕ,只需要求解了这几个参数椭圆就被唯一确定了。那么对于椭圆的求解则至少需要5个独立的方程。即输入的点的个数至少是5个。

二维椭圆的一般方程为:
A x 2 + B x y + C y 2 + D x + E y + 1 = 0 (1) Ax^2+Bxy+Cy^2+Dx+Ey+1=0\tag{1} Ax2+Bxy+Cy2+Dx+Ey+1=0(1)

其与我们想要参数之间的转换关系是:
  参考文章:椭圆拟合理论推导和Matlab实现说怎么得来的不是重点,故直接给出截图。

  根据间接平差与最小二乘的关系可知,整个理论推导的过程就是间接平差理论中法方程的建立过程,也不是什么重点和难点,原文写的偏复杂化了,故省略。构建完法方程采用任意一种自己喜欢的方程解算方法进行求解即可。所以,参考文章里的代码实现过程也过于复杂了。

3、matlab案例

matlab 复制代码
%% --------------------------最小二乘求解----------------------------------
X = lsqlin(NBB,W);
%% --------------------------获取椭圆参数----------------------------------
a = X(1); b = X(2); c = X(3); d = X(4); e = X(5);
x0 = (b * e - 2 * c * d) / (4 * a * c - b * b);
y0 = (b * d - 2 * a * e) / (4 * a * c - b * b);
r1 = sqrt(2 * (a * x0^2 + c * y0^2 + b * x0 * y0 - 1) / (a + c + sqrt((a - c)^2 + b^2)));
r2 = sqrt(2 * (a * x0^2 + c * y0^2 + b * x0 * y0 - 1) / (a + c - sqrt((a - c)^2 + b^2)));
phi = 0.5 * atan2(b, a - c);

4、案例结果

5、参考链接

相关推荐
夏鹏今天学习了吗16 小时前
【LeetCode热题100(82/100)】单词拆分
算法·leetcode·职场和发展
曹轲恒16 小时前
Java中断
java·开发语言
施棠海17 小时前
监听与回调的三个demo
java·开发语言
時肆48517 小时前
C语言造轮子大赛:从零构建核心组件
c语言·开发语言
mit6.82417 小时前
mysql exe
算法
2501_9011478317 小时前
动态规划在整除子集问题中的应用与高性能实现分析
算法·职场和发展·动态规划
赴前尘17 小时前
golang 查看指定版本库所依赖库的版本
开发语言·后端·golang
中草药z17 小时前
【嵌入模型】概念、应用与两大 AI 开源社区(Hugging Face / 魔塔)
人工智能·算法·机器学习·数据集·向量·嵌入模型
de之梦-御风17 小时前
【C#.Net】C#开发的未来前景
开发语言·c#·.net
知乎的哥廷根数学学派18 小时前
基于数据驱动的自适应正交小波基优化算法(Python)
开发语言·网络·人工智能·pytorch·python·深度学习·算法