二维椭圆拟合算法及推导过程

目录

1、间接平差法

该方法忽略了半长轴相对于 x x x轴的旋转角度,需要较好的初值才能拟合成功。


2、最小二乘法

一般斜椭圆具有5个参数,即椭圆中心坐标 ( x 0 , y 0 ) ( x_0 , y_0 ) (x0,y0) (x_0,y_0),椭圆长径和短径 R 1 , R 2 R_1,R_2 R1,R2以及坐标轴旋转的角度 ϕ \phi ϕ,只需要求解了这几个参数椭圆就被唯一确定了。那么对于椭圆的求解则至少需要5个独立的方程。即输入的点的个数至少是5个。

二维椭圆的一般方程为:
A x 2 + B x y + C y 2 + D x + E y + 1 = 0 (1) Ax^2+Bxy+Cy^2+Dx+Ey+1=0\tag{1} Ax2+Bxy+Cy2+Dx+Ey+1=0(1)

其与我们想要参数之间的转换关系是:
  参考文章:椭圆拟合理论推导和Matlab实现说怎么得来的不是重点,故直接给出截图。

  根据间接平差与最小二乘的关系可知,整个理论推导的过程就是间接平差理论中法方程的建立过程,也不是什么重点和难点,原文写的偏复杂化了,故省略。构建完法方程采用任意一种自己喜欢的方程解算方法进行求解即可。所以,参考文章里的代码实现过程也过于复杂了。

3、matlab案例

matlab 复制代码
%% --------------------------最小二乘求解----------------------------------
X = lsqlin(NBB,W);
%% --------------------------获取椭圆参数----------------------------------
a = X(1); b = X(2); c = X(3); d = X(4); e = X(5);
x0 = (b * e - 2 * c * d) / (4 * a * c - b * b);
y0 = (b * d - 2 * a * e) / (4 * a * c - b * b);
r1 = sqrt(2 * (a * x0^2 + c * y0^2 + b * x0 * y0 - 1) / (a + c + sqrt((a - c)^2 + b^2)));
r2 = sqrt(2 * (a * x0^2 + c * y0^2 + b * x0 * y0 - 1) / (a + c - sqrt((a - c)^2 + b^2)));
phi = 0.5 * atan2(b, a - c);

4、案例结果

5、参考链接

相关推荐
bkspiderx1 分钟前
C++经典的数据结构与算法之经典算法思想:贪心算法(Greedy)
数据结构·c++·算法·贪心算法
w2sfot23 分钟前
Passing Arguments as an Object in JavaScript
开发语言·javascript·ecmascript
郝学胜-神的一滴38 分钟前
避免使用非const全局变量:C++中的最佳实践 (C++ Core Guidelines)
开发语言·c++·程序人生
搞一搞汽车电子1 小时前
S32K3平台eMIOS 应用说明
开发语言·驱动开发·笔记·单片机·嵌入式硬件·汽车
星马梦缘1 小时前
Matlab机器人工具箱使用2 DH建模与加载模型
人工智能·matlab·机器人·仿真·dh参数法·改进dh参数法
中华小当家呐1 小时前
算法之常见八大排序
数据结构·算法·排序算法
总有刁民想爱朕ha2 小时前
车牌模拟生成器:Python3.8+Opencv代码实现与商业应用前景(C#、python 开发包SDK)
开发语言·python·数据挖掘
沐怡旸2 小时前
【算法--链表】114.二叉树展开为链表--通俗讲解
算法·面试
一只懒洋洋2 小时前
K-meas 聚类、KNN算法、决策树、随机森林
算法·决策树·聚类
小菜全2 小时前
uniapp新增页面及跳转配置方法
开发语言·前端·javascript·vue.js·前端框架