二维椭圆拟合算法及推导过程

目录

1、间接平差法

该方法忽略了半长轴相对于 x x x轴的旋转角度,需要较好的初值才能拟合成功。


2、最小二乘法

一般斜椭圆具有5个参数,即椭圆中心坐标 ( x 0 , y 0 ) ( x_0 , y_0 ) (x0,y0) (x_0,y_0),椭圆长径和短径 R 1 , R 2 R_1,R_2 R1,R2以及坐标轴旋转的角度 ϕ \phi ϕ,只需要求解了这几个参数椭圆就被唯一确定了。那么对于椭圆的求解则至少需要5个独立的方程。即输入的点的个数至少是5个。

二维椭圆的一般方程为:
A x 2 + B x y + C y 2 + D x + E y + 1 = 0 (1) Ax^2+Bxy+Cy^2+Dx+Ey+1=0\tag{1} Ax2+Bxy+Cy2+Dx+Ey+1=0(1)

其与我们想要参数之间的转换关系是:
  参考文章:椭圆拟合理论推导和Matlab实现说怎么得来的不是重点,故直接给出截图。

  根据间接平差与最小二乘的关系可知,整个理论推导的过程就是间接平差理论中法方程的建立过程,也不是什么重点和难点,原文写的偏复杂化了,故省略。构建完法方程采用任意一种自己喜欢的方程解算方法进行求解即可。所以,参考文章里的代码实现过程也过于复杂了。

3、matlab案例

matlab 复制代码
%% --------------------------最小二乘求解----------------------------------
X = lsqlin(NBB,W);
%% --------------------------获取椭圆参数----------------------------------
a = X(1); b = X(2); c = X(3); d = X(4); e = X(5);
x0 = (b * e - 2 * c * d) / (4 * a * c - b * b);
y0 = (b * d - 2 * a * e) / (4 * a * c - b * b);
r1 = sqrt(2 * (a * x0^2 + c * y0^2 + b * x0 * y0 - 1) / (a + c + sqrt((a - c)^2 + b^2)));
r2 = sqrt(2 * (a * x0^2 + c * y0^2 + b * x0 * y0 - 1) / (a + c - sqrt((a - c)^2 + b^2)));
phi = 0.5 * atan2(b, a - c);

4、案例结果

5、参考链接

相关推荐
Vic10101几秒前
Java 序列化与反序列化:深入解析与实践
java·开发语言
Sirius Wu9 分钟前
开源训练框架:MS-SWIFT详解
开发语言·人工智能·语言模型·开源·aigc·swift
后端小张11 分钟前
【JAVA 进阶】Spring Cloud 微服务全栈实践:从认知到落地
java·开发语言·spring boot·spring·spring cloud·微服务·原理
从零开始学习人工智能14 分钟前
USDT区块链转账 vs SWIFT跨境转账:技术逻辑与场景博弈的深度拆解
开发语言·ssh·swift
星释18 分钟前
Rust 练习册 31:啤酒歌与字符串格式化艺术
开发语言·网络·rust
百***588429 分钟前
MacOS升级ruby版本
开发语言·macos·ruby
执笔论英雄31 分钟前
【大模型训练】forward_backward_func返回多个micro batch 损失
开发语言·算法·batch
序属秋秋秋2 小时前
《Linux系统编程之进程基础》【进程优先级】
linux·运维·c语言·c++·笔记·进程·优先级
草莓熊Lotso2 小时前
C++ STL map 系列全方位解析:从基础使用到实战进阶
java·开发语言·c++·人工智能·经验分享·网络协议·everything
_F_y2 小时前
C++IO流
c++