【ESP32】ESP-IDF开发 | 低功耗管理+RTC唤醒和按键唤醒例程

1. 简介

ESP32支持5种低功耗模式,低功耗管理单元包括调压器、功耗控制器、电源开关单元、电源域隔离单元 (Isolation Cell) 等部分。

1.1 RTC单元

RTC单元是ESP32低功耗管理的核心,可用于管理低功耗模式的进入和退出,控制时钟源、PLL、电源开关和隔离单元以产生电源门控、时钟门控和复位信号。

RTC单元主要包含以下几个模块:

  1. RTC主状态机:记录电源状态;
  2. 数字和模拟电源控制器:可用于为RTC的数字模块和模拟模块生成电源门控/时钟门控信号;
  3. 睡眠和唤醒控制器:可处理低功耗模式的进入和退出;
  4. 计时器:包括RTC主计时器、ULP协处理器计时器和触摸计时器;
  5. 低功耗处理器和传感器控制器:ULP协处理器、触摸控制器、SAR ADC控制器等;
  6. 保留内存:RTC慢速内存,绝大部分用作保留内存或存储ULP协处理器的指令和数据内存;RTC快速内存,绝大部分用作保留内存;
  7. 保留寄存器:该寄存器永远开启,可用于数据存储;
  8. RTC IO管脚:18 个"always-on"管脚,通常作为唤醒源。

1.2 低功耗时钟

在低功耗模式下,ESP32的40 MHz晶振和PLL通常将断电以降低功耗,转而使用低功耗时钟维持工作。

RTC模块可以使用5个低功耗时钟源:

  1. 外部低速晶振时钟XTL32K_CLK(32.768 kHz);
  2. 外部高速晶振时钟XTAL_DIV_CLK(2 MHz ~ 40 MHz);
  3. 内部RC振荡器RC_SLOW_CLK(频率可调,通常为150 kHz);
  4. 内部8MHz振荡器RC_FAST_CLK;
  5. 内部31.25 kHz时钟RC_FAST_DIV_CLK(来自内部8MHz振荡器,256分频)。

以上的时钟源在RTC内部会区分成慢速时钟和快速时钟,每个RTC内部模块所使用的时钟类型是不同的;像RTC定时器、RTC主状态机和电源管理模块使用的是慢速时钟,ULP协处理器、传感器控制器、RTC内存和RTC寄存器使用的是快速时钟。

对于数字内核(无线模块)则可以使用上面的4种时钟源。

1.3 低功耗模式

  1. Active模式
  • CPU的工作时钟为XTAL_DIV_N(40 MHz/26 MHz)或PLL(80 MHz/160 MHz/240 MHz);
  • 芯片可以接收、发射或监听信号。
  1. Modem-sleep模式
  • CPU可以工作,时钟可以配置;
  • Wi-Fi/蓝牙基带受时钟门限控制或关闭,射频模块关闭;
  • PLL 为 80 MHz 时,电流消耗:*≈*30 mA;
  • XTAL 为 2 MHz 时,电流消耗:*≈*3 mA;
  • 即刻唤醒;

*3.*Light-sleep模式

  • 内部 8 MHz 振荡器、40 MHz 高速晶振、PLL 及射频模块均禁用;
  • 数字内核时钟受门限限制,CPU暂停工作;
  • ULP 协处理器和触摸控制器可以周期性触发,对传感器进行监测;
  • 电流消耗: 800 µA;
  • 唤醒延迟:< 1 ms;
  1. Deep-sleep模式
  • 内部 8 MHz 振荡器、40 MHz 高速晶振、PLL 及射频模块均禁用;
  • 数字内核断电,CPU内容丢失;
  • RTC 内核的供电电压降至 0.7V;
  • 8 x 32 位数据保存在通用保留寄存器中;
  • RTC 内存和快速 RTC 内存可以保持;
  • 电流消耗: 6.5 µA;
  • 唤醒延迟:< 1 ms。
  1. 休眠模式
  • 内部 8 MHz 振荡器、40 MHz 高速晶振、PLL 及射频模块均禁用;
  • 数字内核断电,CPU 内容丢失;
  • RTC 外设域断电;
  • RTC 内核的供电电压降至 0.7V;
  • 8 x 32 位数据保存在通用保留寄存器中;
  • RTC 内存和快速 RTC 内存断电;
  • 电流消耗: 4.5 µA;
  • 唤醒源:仅支持 RTC 计时器;
  • 唤醒延迟:< 1 ms。

1.4 唤醒源

唤醒源 Light-sleep Deep-sleep 休眠
EXT0 Y Y N
EXT1 Y Y Y
GPIO Y Y N
RTC定时器 Y Y Y
SDIO Y N N
WiFi Y N N
UART0 Y N N
UART1 Y N N
TOUCH Y Y N
ULP协处理器 Y Y N
蓝牙 Y N N

2. 例程

2.1 RTC定时器唤醒

这个例程中配置RTC定时器,使处理器在进入深度睡眠后5秒自动唤醒。

cpp 复制代码
#include "freertos/FreeRTOS.h"
#include "freertos/queue.h"
#include "esp_log.h"
#include "esp_sleep.h"

#include <string.h>

#define TAG "app"

int app_main()
{
    while (1) {
        ESP_ERROR_CHECK(esp_sleep_enable_timer_wakeup(5 * 1000000));
        ESP_LOGI(TAG, "Enter deep sleep");
        esp_deep_sleep_start();
        ESP_LOGI(TAG, "Exit deep sleep");
    }
}

idf对低功耗的封装是比较完善的,仅需两个函数就可以完成。

esp_sleep_enable_timer_wakeup配置定时器唤醒的时间,单位为微秒。

默认情况下,RTC定时器的时钟源选择的是RC_SLOW_CLK,即内部150kHz振荡器 ,因为该时钟源的功耗是最小的。如果需要更改时钟源,需要修改 CONFIG_RTC_CLK_SRC编译选项

esp_deep_sleep_start使处理器进入深度睡眠模式;当然也可以调用esp_light_sleep_start进入浅睡眠模式。

下面就是程序的系统打印log。需要注意的是,因为深度睡眠下CPU会断电,内部寄存器的内容丢失,所以唤醒后程序是从头开始执行的。

2.2 按键唤醒

这个例程中配置处理器进入深度睡眠,使用GPIO按键唤醒。

cpp 复制代码
#include "freertos/FreeRTOS.h"
#include "freertos/queue.h"
#include "esp_log.h"
#include "esp_sleep.h"
#include "driver/rtc_io.h"

#include <string.h>

#define TAG "app"

int app_main()
{
    esp_sleep_wakeup_cause_t cause = esp_sleep_get_wakeup_cause();
    if (cause == ESP_SLEEP_WAKEUP_EXT0) {
        ESP_LOGI(TAG, "Wake up by EXT0");
    }

    while (1) {
        ESP_ERROR_CHECK(esp_sleep_enable_ext0_wakeup(0, 0));
        ESP_ERROR_CHECK(rtc_gpio_pullup_en(0));  // 内部上拉
        ESP_ERROR_CHECK(rtc_gpio_pulldown_dis(0));
        ESP_LOGI(TAG, "Enter deep sleep");
        esp_deep_sleep_start();
    }
}

如果要在深度睡眠模式下使用GPIO唤醒,必须使用RTC GPIO,ESP32中只有部分GPIO可以复用为该功能。

我使用的是IO0作为唤醒脚。esp_sleep_enable_ext0_wakeup函数传入唤醒IO号和唤醒电平;0就是低电平唤醒,1就是高电平唤醒。

rtc_gpio_pullup/pulldown_dis/en函数配置GPIO的上下拉,我设置成上拉模式。这里要注意即使板子上的IO带了硬件上下拉,但是进入深度睡眠是会关闭VDD电源的,所以还是需要配置。

同样使用esp_deep_sleep_start进入深度睡眠。

下面就是按键唤醒后的系统log。

相关推荐
电子科技圈9 分钟前
XMOS携手合作伙伴晓龙国际联合推出集成了ASRC等功能的多通道音频板
科技·嵌入式硬件·mcu·物联网·音视频·iot
Lilium.H14 分钟前
单片机入门
单片机·嵌入式硬件
小菜鸟学代码··29 分钟前
单片机电路基本知识
单片机·嵌入式硬件·mongodb
杰哥嵌入式开发34 分钟前
萨瑞MCU R7FA8D1BH环境搭建教程
单片机·嵌入式硬件
双手插兜-装高手1 小时前
Linux - 线程基础
linux·c语言·笔记
youcans_1 小时前
【动手学电机驱动】STM32-FOC(8)MCSDK Profiler 电机参数辨识
stm32·单片机·嵌入式硬件·电机控制·foc
XiaoCCCcCCccCcccC2 小时前
Linux环境下的基础开发工具 -- 包管理器,vim,gcc/g++,make/makefile,git,gdb/cgdb
linux·c语言·gdb
Hotchip华芯邦科技2 小时前
MEMS硅麦克风应用电子烟雾化产业稳步爬升,耐高温、 防油、防酸、防腐蚀等性能优势和可实现自动化贴片及极高的一致性等特性使其必将成为主流
科技·单片机·金融·生活·社交电子·健康医疗·制造
7yewh2 小时前
嵌入式硬件杂谈(四)-高速板PCB设计 高速信号全面讲解 蛇形线 等长线 差分对 阻抗对
驱动开发·嵌入式硬件·mcu·物联网·硬件工程·pcb工艺·精益工程
最后一个bug3 小时前
如何理解Lua 使用虚拟堆栈
linux·c语言·开发语言·嵌入式硬件·lua