【Hadoop实训】Hive 数据操作①

目录

一、准备文件

1、创建表

[2、 数据映射](#2、 数据映射)

二、HIVE的数据操作

1、基本查询

a、全表查询

b、选择特定字段查询

c、查询员工表总人数

d、查询员工表总工资额

e、查询5条员工表的信息

2、Where条件查询

a、查询工资等于5000的所有员工

b、查询工资在500到1000的员工信息

c、查询comm为空的所有员工信息

d、查询工资是1500和5000的员工信息

[3、Liket 和 Rlike](#3、Liket 和 Rlike)

a、查找工资以2开头的员工信息

b、查找工资的第二个数值为2的员工信息

c、查找工资中含有2的员工信息


一、准备文件

1、创建表

准备两个文件emp.txt和dept.txt

创建表(在hive上操作) ,先进入itcast 命令:

复制代码
use itcast;

create table emp(empno int,ename string,job string,mgr int,hiredate string,sal double,comm double,deptno int)row format delimited fields  terminated by '\t';

create table dept(deptno int,dname string,loc int) row format delimited fields  terminated by '\t';

2、 数据映射

创建表完成后,将数据文件移动到对应的HDFS路径下,完成数据映射。

二、HIVE的数据操作

1、基本查询

a、全表查询

复制代码
select * from emp;

b、选择特定字段查询

复制代码
select deptno,dname from dept;

c、查询员工表总人数

复制代码
select count(*) cnt from emp;

d、查询员工表总工资额

复制代码
select sum(sal) sum_sal from emp;

e、查询5条员工表的信息

复制代码
select * from emp limit 5;

2、Where条件查询

a、查询工资等于5000的所有员工

复制代码
select * from emp where sal=5000;

b、查询工资在500到1000的员工信息

复制代码
select * from emp where sal between 500 and 1000;

c、查询comm为空的所有员工信息

复制代码
select * from emp where comm is null;

d、查询工资是1500和5000的员工信息

复制代码
select * from emp where sal IN (1500,5000);

3、Liket 和 Rlike

a、查找工资以2开头的员工信息

复制代码
select * fcom emp where sal LIKE '2%';

b、查找工资的第二个数值为2的员工信息

复制代码
hive> select * from emp wheresal LIKE '_2%';

c、查找工资中含有2的员工信息

复制代码
select * from cmp where sal RLIKE ' [2] ';

此模块分为两篇文章哦,继续学习请参考以下链接:【Hadoop实训】Hive 数据操作②-CSDN博客

相关推荐
tiannian122011 分钟前
如何选择适合企业的RFID系统解决方案?
大数据·人工智能
程途拾光1581 小时前
绿色AI与低功耗推理架构
大数据·人工智能
G皮T1 小时前
【Elasticsearch】查询性能调优(三):track_total_hits 和 terminate_after 可能的冲突
大数据·elasticsearch·搜索引擎·全文检索·索引·性能·opensearch
川西胖墩墩1 小时前
中文PC端跨职能流程图模板免费下载
大数据·论文阅读·人工智能·架构·流程图
TDengine (老段)2 小时前
TDengine 企业用户建表规模有多大?
大数据·数据库·物联网·时序数据库·iot·tdengine·涛思数据
Hello.Reader2 小时前
Flink ML MinMaxScaler 把特征缩放到统一区间 [min, max]
大数据·人工智能·flink
许泽宇的技术分享3 小时前
2025年度技术之旅:在AI浪潮下的个人突破、持续创作与平衡之道
大数据·人工智能
Sui_Network3 小时前
智能体支付时代:Sui 为 AI 构建可验证的金融基础设施
大数据·人工智能·游戏·金融·rpc·区块链·量子计算
GEO AI搜索优化助手3 小时前
生成式AI搜索的跨行业革命与商业模式重构
大数据·人工智能·搜索引擎·重构·生成式引擎优化·ai优化·geo搜索优化
武子康4 小时前
大数据-198 KNN 必须先归一化:Min-Max 正确姿势、数据泄露陷阱与 sklearn 落地
大数据·后端·机器学习