Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型多变量回归预测

Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型多变量回归预测

目录

预测效果









基本介绍

Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型多变量回归预测

Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型多变量回归预测 (Matlab2023b 多输入单输出)

1.程序已经调试好,替换数据集后,仅运行一个main即可运行,数据格式为excel!!!

2.Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型多变量回归预测 (Matlab2023b 多输入单输出)。

3.运行环境要求MATLAB版本为2023b及其以上。

4.评价指标包括:R2、MAE、MSE、RPD、RMSE、MAPE等,图很多,符合您的需要代码中文注释清晰,质量极高。

程序设计

  • 完整源码和数据获取方式私信回复Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型多变量回归预测。
clike 复制代码
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); 

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);


%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));

disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])

%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;

disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
会写代码的饭桶4 小时前
Transformers 学习入门:前置知识补漏
rnn·transformer·词嵌入·mlp·反向传播·神经网络基础
addaduvyhup10 小时前
【RNN-LSTM-GRU】第一篇 序列建模基础:理解数据的“顺序”之力
rnn·gru·lstm
拆房老料17 小时前
大语言模型基础-Transformer之上下文
人工智能·语言模型·transformer
盼小辉丶19 小时前
Transformer实战(16)——微调Transformer语言模型用于多类别文本分类
深度学习·自然语言处理·分类·transformer
Arong-tina19 小时前
【论文阅读—深度学习处理表格数据】ResNet-like & FT Transformer
论文阅读·深度学习·transformer
THMAIL19 小时前
机器学习从入门到精通 - 卷积神经网络(CNN)实战:图像识别模型搭建指南
linux·人工智能·python·算法·机器学习·cnn·逻辑回归
二向箔reverse21 小时前
从传统CNN到残差网络:用PyTorch实现更强大的图像分类模型
网络·pytorch·cnn
AI绘画哇哒哒1 天前
【值得收藏】手把手教你用PyTorch构建Transformer英汉翻译系统,从训练到推理
人工智能·pytorch·ai·语言模型·程序员·大模型·transformer
小关会打代码1 天前
深度学习之第七课卷积神经网络 (CNN)调整学习率
深度学习·学习·cnn
addaduvyhup1 天前
【RNN-LSTM-GRU】第二篇 序列模型原理深度剖析:从RNN到LSTM与GRU
rnn·gru·lstm