Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型多变量回归预测

Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型多变量回归预测

目录

预测效果









基本介绍

Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型多变量回归预测

Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型多变量回归预测 (Matlab2023b 多输入单输出)

1.程序已经调试好,替换数据集后,仅运行一个main即可运行,数据格式为excel!!!

2.Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型多变量回归预测 (Matlab2023b 多输入单输出)。

3.运行环境要求MATLAB版本为2023b及其以上。

4.评价指标包括:R2、MAE、MSE、RPD、RMSE、MAPE等,图很多,符合您的需要代码中文注释清晰,质量极高。

程序设计

  • 完整源码和数据获取方式私信回复Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型多变量回归预测。
clike 复制代码
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); 

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);


%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));

disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])

%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;

disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501

[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
小言从不摸鱼2 小时前
【AI大模型】ELMo模型介绍:深度理解语言模型的嵌入艺术
人工智能·深度学习·语言模型·自然语言处理·transformer
铖铖的花嫁11 小时前
基于RNNs(LSTM, GRU)的红点位置检测(pytorch)
pytorch·gru·lstm
irrationality21 小时前
昇思大模型平台打卡体验活动:项目5基于MindSpore实现Transformer机器翻译
深度学习·transformer·机器翻译
神奇的布欧1 天前
TransFormer--注意力机制:位置编码
人工智能·python·深度学习·学习·transformer
严文文-Chris1 天前
【卷积神经网络】
人工智能·神经网络·cnn
陌上阳光1 天前
动手学深度学习68 Transformer
人工智能·深度学习·transformer
代码猪猪傻瓜coding2 天前
关于几种卷积
深度学习·神经网络·cnn
deephub2 天前
TSMamba:基于Mamba架构的高效时间序列预测基础模型
人工智能·深度学习·transformer·时间序列·mamba
Lor :)2 天前
深入浅出 ChatGPT 底层原理:Transformer
深度学习·chatgpt·transformer
Matlab程序猿小助手2 天前
【MATLAB源码-第209期】基于matlab的MSK调制解调仿真,对比三种解调方法的误码率分别是相干解调,1比特差分,2比特差分。
开发语言·算法·matlab·cnn·智能电视