【Hadoop实训】Hive 数据操作②

延续上一篇文章,不懂的宝子们请看以下链接:

【Hadoop实训】Hive 数据操作①-CSDN博客


目录

[一、Group by 语句](#一、Group by 语句)

(1)、计算emp表每个部门的平均工资

(2)、计算emp表每个部门中每个岗位的最高工资

[二、Having 语句](#二、Having 语句)

(1)、求每个部门的平均工资

(2)、求每个部门的平均工资大于22000的部门

[三、Order by 语句](#三、Order by 语句)

(1)、查询员工信息,按工资降序排列

(2)、按照部门和工资升序排序

[四、Sort by语句](#四、Sort by语句)

(1)、设置reduce个数

(2)、查看设置reduce个数

(3)、根据部门编号降序查看员工信息

[(4) 、将在询结果导入到文件中(按照部门编号降序排序)](#(4) 、将在询结果导入到文件中(按照部门编号降序排序))

[五、Distribute by](#五、Distribute by)

[六、Cluster by](#六、Cluster by)

[七、Join 操作](#七、Join 操作)

[(1) 、根据员工表和部门表中的部门编号相等,查询员工编号、员工名称和部门编号:](#(1) 、根据员工表和部门表中的部门编号相等,查询员工编号、员工名称和部门编号:)

(2)、左外连接

(3)、右外连接

(4)、满外连接


一、Group by 语句

(1)、计算emp表每个部门的平均工资

复制代码
select t.deptno,avg(t.sal) avg_ sal from emp t group by t.deptno;

(2)、计算emp表每个部门中每个岗位的最高工资

复制代码
select t.deptno, t.job,max(t.sal) max_sal from emp t group by t.deptno, t.job;

二、Having 语句

(1)、求每个部门的平均工资

复制代码
select deptno,avg(sal) from emp group by deptno;

(2)、求每个部门的平均工资大于22000的部门

复制代码
select deptno,avg(sal) avg_sal from emp group by deptno having avg_sal >2000;

三、Order by 语句

(1)、查询员工信息,按工资降序排列

复制代码
select * from emp order by sal desc;

(2)、按照部门和工资升序排序

复制代码
select ename, deptno, sal from emp order by deptno,sal;

四、Sort by语句

(1)、设置reduce个数

复制代码
set mapreduce.job.reduces=3;

(2)、查看设置reduce个数

复制代码
set mapreduce.job.reduces;

(3)、根据部门编号降序查看员工信息

复制代码
select * from emp sort by empno desc;

(4) 、将在询结果导入到文件中(按照部门编号降序排序)

复制代码
insert overwrite local directory '/root/sortby-result' select * from emp  sort by deptno desc;

五、Distribute by

六、Cluster by

以下两种写法等价:

复制代码
select * from emp cluster by deptno;
复制代码
select * from emp distribute by deptno sort by deptno;

七、Join 操作

(1) 、根据员工表和部门表中的部门编号相等,查询员工编号、员工名称和部门编号:

复制代码
select e.empno, e.ename,d.deptno,d.dname from emp e join dept d on e.deptno=d.deptno;

(2)、左外连接

Join操作符左边表中符合条件的所有记录将会被返回。

复制代码
select e.empno, e.ename,d.deptno,d.dname from emp e left join dept d on e.deptno=d.deptno;

(3)、右外连接

Join操作符右边表中符合条件的所有记录将会被返回。

复制代码
select e.empno, e.ename,d.deptno,d.dname from emp e right join dept d on e.deptno=d.deptno;

(4)、满外连接

返回所有表中符合条件的所有记录,如果任一-表的指定字段没有符合条件的值的话,那么就使用NULL值替代。

复制代码
select e.empno, e.ename,d.deptno,d.dname from emp e full join dept d on e.deptno=d.deptno;

在使用Join语句时,如果想限制输出结果,可以在Join语句后面添加Where语句,进行过滤。

复制代码
select e.empno, e.ename,d.deptno,d.dname from emp e full join dept d on e.deptno=d.deptno where d.deptno=20;

学习到这里就完结啦~不懂的宝子请私信哦!

相关推荐
薇晶晶4 小时前
hadoop中了解yarm
hadoop
StarRocks_labs8 小时前
从InfluxDB到StarRocks:Grab实现Spark监控平台10倍性能提升
大数据·数据库·starrocks·分布式·spark·iris·物化视图
若兰幽竹8 小时前
【Spark分析HBase数据】Spark读取并分析HBase数据
大数据·spark·hbase
R²AIN SUITE9 小时前
金融合规革命:R²AIN SUITE 如何重塑银行业务智能
大数据·人工智能
绿算技术10 小时前
“强强联手,智启未来”凯创未来与绿算技术共筑高端智能家居及智能照明领域新生态
大数据·人工智能·智能家居
只因只因爆11 小时前
spark的缓存
大数据·缓存·spark
Leo.yuan12 小时前
3D 数据可视化系统是什么?具体应用在哪方面?
大数据·数据库·3d·信息可视化·数据分析
只因只因爆12 小时前
spark小任务
大数据·分布式·spark
cainiao08060512 小时前
Java 大视界——Java 大数据在智慧交通智能停车诱导系统中的数据融合与实时更新
java·大数据·开发语言
End92815 小时前
Spark之搭建Yarn模式
大数据·分布式·spark