【Hadoop实训】Hive 数据操作②

延续上一篇文章,不懂的宝子们请看以下链接:

【Hadoop实训】Hive 数据操作①-CSDN博客


目录

[一、Group by 语句](#一、Group by 语句)

(1)、计算emp表每个部门的平均工资

(2)、计算emp表每个部门中每个岗位的最高工资

[二、Having 语句](#二、Having 语句)

(1)、求每个部门的平均工资

(2)、求每个部门的平均工资大于22000的部门

[三、Order by 语句](#三、Order by 语句)

(1)、查询员工信息,按工资降序排列

(2)、按照部门和工资升序排序

[四、Sort by语句](#四、Sort by语句)

(1)、设置reduce个数

(2)、查看设置reduce个数

(3)、根据部门编号降序查看员工信息

[(4) 、将在询结果导入到文件中(按照部门编号降序排序)](#(4) 、将在询结果导入到文件中(按照部门编号降序排序))

[五、Distribute by](#五、Distribute by)

[六、Cluster by](#六、Cluster by)

[七、Join 操作](#七、Join 操作)

[(1) 、根据员工表和部门表中的部门编号相等,查询员工编号、员工名称和部门编号:](#(1) 、根据员工表和部门表中的部门编号相等,查询员工编号、员工名称和部门编号:)

(2)、左外连接

(3)、右外连接

(4)、满外连接


一、Group by 语句

(1)、计算emp表每个部门的平均工资

复制代码
select t.deptno,avg(t.sal) avg_ sal from emp t group by t.deptno;

(2)、计算emp表每个部门中每个岗位的最高工资

复制代码
select t.deptno, t.job,max(t.sal) max_sal from emp t group by t.deptno, t.job;

二、Having 语句

(1)、求每个部门的平均工资

复制代码
select deptno,avg(sal) from emp group by deptno;

(2)、求每个部门的平均工资大于22000的部门

复制代码
select deptno,avg(sal) avg_sal from emp group by deptno having avg_sal >2000;

三、Order by 语句

(1)、查询员工信息,按工资降序排列

复制代码
select * from emp order by sal desc;

(2)、按照部门和工资升序排序

复制代码
select ename, deptno, sal from emp order by deptno,sal;

四、Sort by语句

(1)、设置reduce个数

复制代码
set mapreduce.job.reduces=3;

(2)、查看设置reduce个数

复制代码
set mapreduce.job.reduces;

(3)、根据部门编号降序查看员工信息

复制代码
select * from emp sort by empno desc;

(4) 、将在询结果导入到文件中(按照部门编号降序排序)

复制代码
insert overwrite local directory '/root/sortby-result' select * from emp  sort by deptno desc;

五、Distribute by

六、Cluster by

以下两种写法等价:

复制代码
select * from emp cluster by deptno;
复制代码
select * from emp distribute by deptno sort by deptno;

七、Join 操作

(1) 、根据员工表和部门表中的部门编号相等,查询员工编号、员工名称和部门编号:

复制代码
select e.empno, e.ename,d.deptno,d.dname from emp e join dept d on e.deptno=d.deptno;

(2)、左外连接

Join操作符左边表中符合条件的所有记录将会被返回。

复制代码
select e.empno, e.ename,d.deptno,d.dname from emp e left join dept d on e.deptno=d.deptno;

(3)、右外连接

Join操作符右边表中符合条件的所有记录将会被返回。

复制代码
select e.empno, e.ename,d.deptno,d.dname from emp e right join dept d on e.deptno=d.deptno;

(4)、满外连接

返回所有表中符合条件的所有记录,如果任一-表的指定字段没有符合条件的值的话,那么就使用NULL值替代。

复制代码
select e.empno, e.ename,d.deptno,d.dname from emp e full join dept d on e.deptno=d.deptno;

在使用Join语句时,如果想限制输出结果,可以在Join语句后面添加Where语句,进行过滤。

复制代码
select e.empno, e.ename,d.deptno,d.dname from emp e full join dept d on e.deptno=d.deptno where d.deptno=20;

学习到这里就完结啦~不懂的宝子请私信哦!

相关推荐
zhang988000042 分钟前
储能领域大数据平台的设计中如何使用 Hadoop、Spark、Flink 等组件实现数据采集、清洗、存储及实时 / 离线计算,支持储能系统分析与预测
大数据·hadoop·spark
老蒋新思维1 小时前
存量竞争下的破局之道:品牌与IP的双引擎策略|创客匠人
大数据·网络·知识付费·创客匠人·知识变现
Lx3522 小时前
Hadoop日志分析实战:快速定位问题的技巧
大数据·hadoop
喂完待续5 小时前
【Tech Arch】Hive技术解析:大数据仓库的SQL桥梁
大数据·数据仓库·hive·hadoop·sql·apache
SelectDB6 小时前
5000+ 中大型企业首选的 Doris,在稳定性的提升上究竟花了多大的功夫?
大数据·数据库·apache
最初的↘那颗心6 小时前
Flink Stream API 源码走读 - window 和 sum
大数据·hadoop·flink·源码·实时计算·窗口函数
Yusei_05238 小时前
迅速掌握Git通用指令
大数据·git·elasticsearch
一只栖枝14 小时前
华为 HCIE 大数据认证中 Linux 命令行的运用及价值
大数据·linux·运维·华为·华为认证·hcie·it
喂完待续18 小时前
Apache Hudi:数据湖的实时革命
大数据·数据仓库·分布式·架构·apache·数据库架构
青云交18 小时前
Java 大视界 -- 基于 Java 的大数据可视化在城市交通拥堵治理与出行效率提升中的应用(398)
java·大数据·flink·大数据可视化·拥堵预测·城市交通治理·实时热力图