【论文笔记】Prefix-Tuning: Optimizing Continuous Prompts for Generation

🍎个人主页:小嗷犬的个人主页

🍊个人网站:小嗷犬的技术小站

🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。


基本信息

标题 : Prefix-Tuning: Optimizing Continuous Prompts for Generation
作者 : Xiang Lisa Li, Percy Liang
发表 : ACL 2021
arXiv : https://arxiv.org/abs/2101.00190

摘要

微调是利用大型预训练语言模型进行下游任务的事实上的方法。

然而,微调会修改所有语言模型参数,因此需要为每个任务存储一个完整副本。

在本文中,我们提出了Prefix-tuning,这是一种轻量级的自然语言生成任务微调替代方案,它保持语言模型参数冻结,并优化一系列连续的任务特定向量,我们称之为Prefix。

Prefix-tuning从语言模型的提示中汲取灵感,允许后续标记将此Prefix视为"虚拟token"。

我们将Prefix-tuning应用于GPT-2进行表格到文本生成,以及应用于BART进行摘要。

我们表明,通过仅修改0.1%的参数,Prefix-tuning在全数据设置中获得了可比的性能,在低数据设置中优于微调,并且更好地推广到训练期间未见过的主题示例。

全量微调(上方)更新所有LM参数(红色Transformer框)并需要为每个任务存储完整模型副本。我们提出Prefix-tuning(下方),冻结LM参数,仅优化Prefix(红色Prefix块)

Prefix-Tuning

实验

性能指标(除TER外,数值越高越好)用于E2E(左侧)、WebNLG(中间)和DART(右侧)的表格到文本生成。

(左)低数据环境中的定性示例。(右)前缀调整(橙色)在低数据机制中优于微调(蓝色),并且需要更少的参数。

XSUM摘要数据集上方法的性能。

XSUM上的外推性能。

XSUM上的外推性能。前缀长度与摘要(左)和表格到文本(右)的性能对比。

内嵌式和插入式的内在评估。

初始化前缀时,使用真实单词的激活效果显著优于随机初始化,尤其是在低数据集环境下。

数据效率曲线:训练集百分比与表格到文本(端到端)性能对比。

相关推荐
kikikidult1 小时前
Ubuntu20.04运行openmvg和openmvs实现三维重建(未成功,仅供参考)
人工智能·笔记·ubuntu·计算机视觉
189228048612 小时前
NW728NW733美光固态闪存NW745NW746
大数据·服务器·网络·人工智能·性能优化
大模型最新论文速读2 小时前
模拟注意力:少量参数放大 Attention 表征能力
人工智能·深度学习·机器学习·语言模型·自然语言处理
lishaoan773 小时前
用TensorFlow进行逻辑回归(二)
人工智能·tensorflow·逻辑回归
慌ZHANG3 小时前
智慧气象新范式:人工智能如何重构城市级气象服务生态?
人工智能
Eumenidus3 小时前
使用ESM3蛋白质语言模型进行快速大规模结构预测
人工智能·语言模型·自然语言处理
熊猫钓鱼>_>3 小时前
FastGPT革命:下一代语言模型的极速进化
人工智能·语言模型·自然语言处理
吕永强3 小时前
电网的智能觉醒——人工智能重构能源生态的技术革命与公平悖论
人工智能·科普
极限实验室3 小时前
喜报 - 极限科技荣获 2025 上海开源创新菁英荟「开源创新新星企业」奖
人工智能·开源
在美的苦命程序员3 小时前
芯片之后,AI之争的下一个战场是能源?
人工智能