【论文笔记】Prefix-Tuning: Optimizing Continuous Prompts for Generation

🍎个人主页:小嗷犬的个人主页

🍊个人网站:小嗷犬的技术小站

🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。


基本信息

标题 : Prefix-Tuning: Optimizing Continuous Prompts for Generation
作者 : Xiang Lisa Li, Percy Liang
发表 : ACL 2021
arXiv : https://arxiv.org/abs/2101.00190

摘要

微调是利用大型预训练语言模型进行下游任务的事实上的方法。

然而,微调会修改所有语言模型参数,因此需要为每个任务存储一个完整副本。

在本文中,我们提出了Prefix-tuning,这是一种轻量级的自然语言生成任务微调替代方案,它保持语言模型参数冻结,并优化一系列连续的任务特定向量,我们称之为Prefix。

Prefix-tuning从语言模型的提示中汲取灵感,允许后续标记将此Prefix视为"虚拟token"。

我们将Prefix-tuning应用于GPT-2进行表格到文本生成,以及应用于BART进行摘要。

我们表明,通过仅修改0.1%的参数,Prefix-tuning在全数据设置中获得了可比的性能,在低数据设置中优于微调,并且更好地推广到训练期间未见过的主题示例。

全量微调(上方)更新所有LM参数(红色Transformer框)并需要为每个任务存储完整模型副本。我们提出Prefix-tuning(下方),冻结LM参数,仅优化Prefix(红色Prefix块)

Prefix-Tuning

实验

性能指标(除TER外,数值越高越好)用于E2E(左侧)、WebNLG(中间)和DART(右侧)的表格到文本生成。

(左)低数据环境中的定性示例。(右)前缀调整(橙色)在低数据机制中优于微调(蓝色),并且需要更少的参数。

XSUM摘要数据集上方法的性能。

XSUM上的外推性能。

XSUM上的外推性能。前缀长度与摘要(左)和表格到文本(右)的性能对比。

内嵌式和插入式的内在评估。

初始化前缀时,使用真实单词的激活效果显著优于随机初始化,尤其是在低数据集环境下。

数据效率曲线:训练集百分比与表格到文本(端到端)性能对比。

相关推荐
江鸟19981 小时前
AI 编程日报 · 2025 年 5 月 04 日|GitHub Copilot Agent 模式发布,Ultralytics 优化训练效率
人工智能·github·copilot
liaokailin2 小时前
Spring AI 实战:第十一章、Spring AI Agent之知行合一
java·人工智能·spring
Bruce_Liuxiaowei3 小时前
从零开发一个B站视频数据统计Chrome插件
人工智能·visualstudio·html
乌恩大侠3 小时前
【AI科技】ROCm 6.4:打破 AI、HPC 和模块化 GPU 软件的障碍
人工智能·科技
CHNMSCS4 小时前
PyTorch_张量基本运算
人工智能·pytorch·python
时而支楞时而摆烂的小刘4 小时前
CUDA、pytorch、配置环境教程合集
人工智能·pytorch·python
试着5 小时前
【AI面试准备】元宇宙测试:AI+低代码构建虚拟场景压力测试
人工智能·低代码·面试
Frankabcdefgh5 小时前
颠覆者DeepSeek:从技术解析到实战指南——开源大模型如何重塑AI生态
人工智能·科技·深度学习·自然语言处理·职场和发展
程序员陆通6 小时前
MCP协议与Dify集成教程
人工智能·ai编程
正宗咸豆花6 小时前
【Trae+LucidCoder】三分钟编写专业Dashboard页面
人工智能