【论文笔记】Prefix-Tuning: Optimizing Continuous Prompts for Generation

🍎个人主页:小嗷犬的个人主页

🍊个人网站:小嗷犬的技术小站

🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。


基本信息

标题 : Prefix-Tuning: Optimizing Continuous Prompts for Generation
作者 : Xiang Lisa Li, Percy Liang
发表 : ACL 2021
arXiv : https://arxiv.org/abs/2101.00190

摘要

微调是利用大型预训练语言模型进行下游任务的事实上的方法。

然而,微调会修改所有语言模型参数,因此需要为每个任务存储一个完整副本。

在本文中,我们提出了Prefix-tuning,这是一种轻量级的自然语言生成任务微调替代方案,它保持语言模型参数冻结,并优化一系列连续的任务特定向量,我们称之为Prefix。

Prefix-tuning从语言模型的提示中汲取灵感,允许后续标记将此Prefix视为"虚拟token"。

我们将Prefix-tuning应用于GPT-2进行表格到文本生成,以及应用于BART进行摘要。

我们表明,通过仅修改0.1%的参数,Prefix-tuning在全数据设置中获得了可比的性能,在低数据设置中优于微调,并且更好地推广到训练期间未见过的主题示例。

全量微调(上方)更新所有LM参数(红色Transformer框)并需要为每个任务存储完整模型副本。我们提出Prefix-tuning(下方),冻结LM参数,仅优化Prefix(红色Prefix块)

Prefix-Tuning

实验

性能指标(除TER外,数值越高越好)用于E2E(左侧)、WebNLG(中间)和DART(右侧)的表格到文本生成。

(左)低数据环境中的定性示例。(右)前缀调整(橙色)在低数据机制中优于微调(蓝色),并且需要更少的参数。

XSUM摘要数据集上方法的性能。

XSUM上的外推性能。

XSUM上的外推性能。前缀长度与摘要(左)和表格到文本(右)的性能对比。

内嵌式和插入式的内在评估。

初始化前缀时,使用真实单词的激活效果显著优于随机初始化,尤其是在低数据集环境下。

数据效率曲线:训练集百分比与表格到文本(端到端)性能对比。

相关推荐
新加坡内哥谈技术2 分钟前
Meta计划借助AI实现广告创作全自动化
运维·人工智能·自动化
西猫雷婶31 分钟前
pytorch基本运算-导数和f-string
人工智能·pytorch·python
Johny_Zhao32 分钟前
华为MAAS、阿里云PAI、亚马逊AWS SageMaker、微软Azure ML各大模型深度分析对比
linux·人工智能·ai·信息安全·云计算·系统运维
顽强卖力33 分钟前
第二十八课:深度学习及pytorch简介
人工智能·pytorch·深度学习
述雾学java34 分钟前
深入理解 transforms.Normalize():PyTorch 图像预处理中的关键一步
人工智能·pytorch·python
武子康34 分钟前
大数据-276 Spark MLib - 基础介绍 机器学习算法 Bagging和Boosting区别 GBDT梯度提升树
大数据·人工智能·算法·机器学习·语言模型·spark-ml·boosting
要努力啊啊啊37 分钟前
使用 Python + SQLAlchemy 创建知识库数据库(SQLite)—— 构建本地知识库系统的基础《一》
数据库·人工智能·python·深度学习·自然语言处理·sqlite
武子康37 分钟前
大数据-277 Spark MLib - 基础介绍 机器学习算法 Gradient Boosting GBDT算法原理 高效实现
大数据·人工智能·算法·机器学习·ai·spark-ml·boosting
中杯可乐多加冰1 小时前
【解决方案-RAGFlow】RAGFlow显示Task is queued、 Microsoft Visual C++ 14.0 or greater is required.
人工智能·大模型·llm·rag·ragflow·deepseek