python+智谱AI-实现钉钉消息自动回复

python+智谱AI-实现钉钉消息自动回复

实现了电脑窗口切换,截图识别未读消息,与语言模型交互后,将答案带入到钉钉窗口中。

偷个懒,直接贴代码了,后续不断完善注释,如果遇到读不懂的地方,欢迎交流。

python 复制代码
# -*- coding: UTF-8 -*-
import time
# 必备的注释文件
import pygetwindow
from PIL import ImageGrab,Image
import time
import cv2
import numpy as np
import pyautogui
import easyocr
import  os
import pytesseract
import zhipuai
from zhipuai import ZhipuAI
import pyperclip
# from win10toast import ToastNotifier
import tkinter as tk
# def toastmsg(msg):
#
#     toaster = ToastNotifier()
#     toaster.show_toast("钉钉回复工具", msg, duration=10)
# 打开对话框
def openchat(xm,ym):
    # # 显示结果
    # cv2.imshow('Detected Red Points', image)
    # cv2.waitKey(0)
    # cv2.destroyAllWindows()
    # 要点击屏幕上的那个点
    # 移动鼠标到图标位置
    pyautogui.moveTo(xm, ym, duration=1)
    time.sleep(2)
    # 点击图标
    pyautogui.click(xm, ym)
# 识别对话框中的文字
def watchtext(imgurl):
    print('识别图片')
    # 读取图片
    image = cv2.imread(imgurl)
    # 图片预处理,例如灰度化、二值化等
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
    # 使用pytesseract识别文字
    pytesseract.pytesseract.tesseract_cmd = r'D:\Program Files\Tesseract-OCR\tesseract.exe'
    text = pytesseract.image_to_string(thresh, lang='chi_sim')
    print(text)
    # 另外一个工具
    # 设为中英文混合识别:ch_sim en
    reader = easyocr.Reader(['ch_sim', 'en'], gpu=False)
    # 识别图片
    #
    # print(str(os.path) + '/' + imgurl)
    # result = reader.readtext(imgurl, detail=0)
    # for i in result:
    #     # 输出识别出的信息
    #     # 输出识别出的信息
    #     # print('输出识别出的信息')
    #     print(i, end='')
    #     做一下图片的裁剪再识别:ch_sim en
    img = Image.open(imgurl)
    # 获取图片大小
    img_size = img.size
    # h = img_size[1] #图片高度
    # w = img_size[0] #图片宽度
    # 设置截取部分相对位置
    x = 0.20 * img_size[0]+200
    y = 0.1 * img_size[1]
    # y = 350
    w = 1 * img_size[0]-400
    h = 1* img_size[1]-720
    # 截取图片
    cropped = img.crop((x, y, x + w, y + h))  # (x1,y1,x2,y2)
    # 保存截图图片,命名为test.png
    cropped.save('test01.png')
    # 设为中英文混合识别:ch_sim en
    reader = easyocr.Reader(['ch_sim', 'en'], gpu=False, verbose=False)
    # 路径改为用户需要识别的图片的路径
    result = reader.readtext('test01.png', detail=0)
    for i in result:
        # 输出识别出的信息
        # 输出识别出的信息
        # print('输出识别出的信息')
        print(i, end='')
    return result
# 截图保存
def getmscreen():
    windowsjiantou  = pygetwindow.getWindowsWithTitle('XXXX')
    windowsjiantou[0].show()
    w = windowsjiantou[0]
    w.activate()
    # 获取桌面窗口的坐标和尺寸
    left, top, width, height = w.left, w.top, w.width, w.height
    w.activate()
    w.show()
    # 将窗口最大化
    w.maximize()
    # 下面的单位是5秒
    time.sleep(0.5)
    print('运行到了这里')
    # 使用ImageGrab.grab()方法截取桌面
    screenshot = ImageGrab.grab(bbox=(left, top, left + width, top + height))
    # 获取当前时间的时间戳
    timestamp = time.time()
    print("当前时间戳:", timestamp)
    imgurl =  str(timestamp)+'desktop_screenshot.png'
    # 保存截图
    # screenshot.save(imgurl)
    img = pyautogui.screenshot()
    img.save(str(timestamp)+'desktop_screenshot.png')
    return imgurl
def getchat(questiontext):
    print(questiontext)
    # 接入质谱AI的API
    client = ZhipuAI(api_key=" . ")  # 请填写您自己的APIKey
    response = client.chat.completions.create(
        model="glm-4",  # 填写需要调用的模型名称  OA表单中选不到项目的添加方法
        messages=[
            {"role": "user", "content": questiontext},
        ],
        tools=[
            {
                "type": "retrieval",
                "retrieval": {
                    "knowledge_id": " ",
                    "prompt_template": "从文档\n\"\"\"\n{{knowledge}}\n\"\"\"\n中找问题\n\"\"\"\n{{question}}\n\"\"\"\n的答案,找到答案就仅使用文档语句回答问题,找不到答案就用自身知识回答并且告诉用户该信息不是来自文档。\n不要复述问题,直接开始回答。"
                }
            }
        ],
        stream=True,
    )
    resstr = ""
    for chunk in response:
        # print(chunk.choices[0].delta)
        resstr = resstr + str(chunk.choices[0].delta.content)
        # print(chunk.choices[0].delta.content)
    print(resstr)
    # 做一个data,把数据返回去
    return resstr
def pasttext(text):
    windowsjiantou  = pygetwindow.getWindowsWithTitle('XXXX')
    windowsjiantou[0].show()
    w = windowsjiantou[0]
    w.activate()
    # 移动鼠标到目标位置(这里以屏幕坐标为例)
    pyautogui.moveTo(600, 900)
    # 模拟鼠标点击
    pyautogui.click()
    # 模拟键盘输入
    # pyautogui.typewrite('你好www', interval=0.2)
    # # 模拟按下Win键
    # pyautogui.press("win")
    # # 输入中文输入法的名称,例如"微软拼音输入法"
    # pyautogui.typewrite("微软拼音输入法")
    # # 模拟按下回车键
    # pyautogui.press("enter")
    # # 等待中文输入法启动
    # pyautogui.sleep(1)
    # # 输入中文字符
    # pyautogui.typewrite("你好,世界!")
    pyperclip.copy(text)
    time.sleep(0.5)
    pyautogui.hotkey('ctrl', 'v')
    # pyperclip.paste()
def capture():
    # toastmsg('程序运行中')
    # 获取桌面窗口
    # desktop_window = pygetwindow.getDesktopWindow()
    desktop_window = pygetwindow.getAllWindows()
    desktop_window_title = pygetwindow.getAllTitles()
    for window in desktop_window_title:
        print(window)
    windowsjiantou  = pygetwindow.getWindowsWithTitle('XXXX')
    windowsjiantou[0].show()
    w = windowsjiantou[0]
    w.activate()
    # 获取桌面窗口的坐标和尺寸
    left, top, width, height = w.left, w.top, w.width, w.height
    w.activate()
    w.show()
    # 将窗口最大化
    w.maximize()
    # 下面的单位是5秒
    time.sleep(0.5)
    print('运行到了这里')
    # 使用ImageGrab.grab()方法截取桌面
    screenshot = ImageGrab.grab(bbox=(left, top, left + width, top + height))
    # 获取当前时间的时间戳
    timestamp = time.time()
    print("当前时间戳:", timestamp)
    # 保存截图
    screenshot.save(str(timestamp)+'desktop_screenshot.png')
    # 读取图片上的红点
    # 识别图片
    imgs =str(timestamp)+'desktop_screenshot.png'
    # 读取图像
    image = cv2.imread(imgs)
    # 读取图像
    # 将图像从BGR转换为HSV颜色空间
    hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
    # 定义红色的HSV范围
    lower_red1 = np.array([0, 120, 70])
    upper_red1 = np.array([10, 255, 255])
    lower_red2 = np.array([170, 120, 70])
    upper_red2 = np.array([180, 255, 255])
    # 创建掩码
    mask1 = cv2.inRange(hsv, lower_red1, upper_red1)
    mask2 = cv2.inRange(hsv, lower_red2, upper_red2)
    mask = cv2.bitwise_or(mask1, mask2)
    # 形态学操作以去除噪声
    kernel = np.ones((5, 5), np.uint8)
    mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
    mask = cv2.dilate(mask, kernel, iterations=1)
    # 寻找轮廓  这里满足要求的轮廓已经放到这里数组里了
    contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    myusecolours = []
    # 绘制轮廓
    for contour in contours:
        # 计算轮廓的面积
        # 先留下面积大于100的轮廓
        area = cv2.contourArea(contour)
        if area > 50:  # 可以根据实际情况调整这个阈值
            print('面积大于50')
            # 计算轮廓的周长
            perimeter = cv2.arcLength(contour, True)
            # 计算轮廓的近似形状
            # approxPolyDP 函数用于计算轮廓的近似形状
            # approxPolyDP
            approx = cv2.approxPolyDP(contour, 0.04 * perimeter, True)
            # 如果轮廓是圆形,那么近似形状的顶点数量应该接近于0
            # 但是这里我直接用半径来判断
            if len(approx) < 10:
                (x, y), radius = cv2.minEnclosingCircle(contour)
                center = (int(x), int(y))
                radius = int(radius)
                if radius > 5:  # 可以根据实际情况调整这个阈值  圆角值改小了一点
                    # 使用cv2.circle() 在原图上绘制筛选后的圆形轮廓。
                    print('绘制了一个图形print')
                    cv2.circle(image, center, radius, (0, 255, 0), 2)
                    # 这里是通过考验的contour
                    # 获取contour 的坐标
                    print(contour)
                    myusecolours.append(contour)
    # 显示结果
    # cv2.imshow('Contours', image)
    # cv2.waitKey(0)
    # cv2.destroyAllWindows()
    print('----')
    myusecolours02 =myusecolours
    myusecolours02.reverse()
    print(len(myusecolours02))
    print(len(myusecolours02))
    if len(myusecolours02) == 0:
        return
    contoursmsg = myusecolours02[-1]
    # if len(myusecolours02) < 3:
    #     contoursmsg = myusecolours02[2]
    #
    #
    # # 获取第一条未读消息
    # if len(myusecolours02) < 2:
    #     contoursmsg = myusecolours02[1]
    #
    # if len(myusecolours02) < 1:
    #     contoursmsg = myusecolours02[0]
    # 获取坐标
    x, y, w, h = cv2.boundingRect(contoursmsg)
    # 打印边界框坐标
    print(f"Bounding box coordinates: x={x}, y={y}, w={w}, h={h}")
    # 得到中心点的位置
    (xm, ym), radius = cv2.minEnclosingCircle(contoursmsg)
    print(f"Bounding box coordinates: ----------------------------  x={xm}, y={ym}")
    # 打开对话框
    openchat(xm,ym)
    # 截图
    imgurl = getmscreen()
    # 识别对话框中的文字
    textcontent = watchtext(imgurl)
    # print(textcontent)
    textcontent02 = ''
    for item in textcontent:
        print(item+'\n')
        textcontent02= textcontent02+item+''
    # 获取最后一条消息
    # textcontent.reverse()
    # lasttext = textcontent[0]
    # print('最新的一条消息')
    # print(lasttext)
    # 调用API开始聊天--最后一条消息
    textcontent.reverse()
    textcontent01 = textcontent[0]
    answer = getchat(textcontent01)
    # 调用API开始聊天--所有识别的内容
    # answer = getchat(textcontent02)
    # 将内容粘贴到钉钉窗口中
    pasttext(answer)
    # toastmsg('程序运完毕')
    # print(desktop_window)
    # print(desktop_window_title)
    # # 获取桌面窗口的坐标和尺寸
    # left, top, width, height = desktop_window.left, desktop_window.top, desktop_window.width, desktop_window.height
    #
    # # 使用ImageGrab.grab()方法截取桌面
    # screenshot = ImageGrab.grab(bbox=(left, top, left + width, top + height))
    #
    # # 保存截图
    # screenshot.save('desktop_screenshot.png')
def say_hello():
    capture()
if __name__ == '__main__':
 
    # 先来屏幕截图
    capture()
    # root = tk.Tk()
    # root.geometry("400x500")
    # # 禁止用户调整窗口大小
    # root.resizable(False, False)
    #
    # label = tk.Label(root, text=" ", font=("Microsoft YaHei", 16))
    # label.pack(pady=20)
    #
    #
    # label = tk.Label(root, text="点击 接管电脑 后,程序会识别未读消息并到知识库中进行检索填充回复。对信息修改勾,可以进行发送,或者设置自动发送",wraplength=300, font=("Microsoft YaHei", 16))
    # label.pack(pady=20)
    #
    #
    #
    # button = tk.Button(root, text="接管电脑", command=say_hello)
    # button.pack(pady=20)
    #
    # root.mainloop()
相关推荐
一 铭44 分钟前
AI领域新趋势:从提示(Prompt)工程到上下文(Context)工程
人工智能·语言模型·大模型·llm·prompt
云泽野3 小时前
【Java|集合类】list遍历的6种方式
java·python·list
麻雀无能为力4 小时前
CAU数据挖掘实验 表分析数据插件
人工智能·数据挖掘·中国农业大学
时序之心4 小时前
时空数据挖掘五大革新方向详解篇!
人工智能·数据挖掘·论文·时间序列
IMPYLH5 小时前
Python 的内置函数 reversed
笔记·python
.30-06Springfield5 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
说私域6 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的超级文化符号构建路径研究
人工智能·小程序·开源
永洪科技6 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi
shangyingying_16 小时前
关于小波降噪、小波增强、小波去雾的原理区分
人工智能·深度学习·计算机视觉
小赖同学啊7 小时前
物联网数据安全区块链服务
开发语言·python·区块链