torch.nn.**和torch.nn.functional.**的区别

torch.nn.**

torch.nn.**是一个继承了torch.nn.Module的类,使用前必须先构造对象,然后再调用。如果直接使用则会报错

例如

bash 复制代码
a = torch.randn(3,4)
print(a)
sigmoid = torch.nn.Sigmoid()
a = sigmoid(a)
print(a)
a = torch.nn.Sigmoid(a)
bash 复制代码
tensor([[ 0.2462, -2.1680, -1.4064, -0.0268],
        [-0.4800, -0.4670,  1.7318,  0.3498],
        [ 0.0137, -2.1080, -0.0825, -0.1350]])
tensor([[0.5612, 0.1027, 0.1968, 0.4933],
        [0.3823, 0.3853, 0.8496, 0.5866],
        [0.5034, 0.1083, 0.4794, 0.4663]])
        Traceback (most recent call last):
        
Traceback (most recent call last):
  File "C:\文件\Llama\tmp.py", line 8, in <module>
    a = torch.nn.Sigmoid(a)
        ^^^^^^^^^^^^^^^^^^^
  File "C:\Users\90929\AppData\Local\conda\conda\envs\lce\Lib\site-packages\torch\nn\modules\module.py", line 485, in __init__
    raise TypeError(
TypeError: Sigmoid.__init__() takes 1 positional argument but 2 were given

torch.nn.functional.**

torch.nn.functional.**是一个纯数学函数,可以直接使用

bash 复制代码
a = torch.randn(3,4)
print(a)
a = torch.nn.functional.sigmoid(a)
print(a)
bash 复制代码
tensor([[-0.1516,  0.5398,  0.3226, -0.4956],
        [-0.2250,  0.6393,  0.4432,  0.4215],
        [-0.5741,  0.0689,  0.3078, -1.5994]])
tensor([[0.4622, 0.6318, 0.5799, 0.3786],
        [0.4440, 0.6546, 0.6090, 0.6039],
        [0.3603, 0.5172, 0.5763, 0.1681]])
相关推荐
葫三生26 分钟前
如何评价《论三生原理》在科技界的地位?
人工智能·算法·机器学习·数学建模·量子计算
m0_751336392 小时前
突破性进展:超短等离子体脉冲实现单电子量子干涉,为飞行量子比特奠定基础
人工智能·深度学习·量子计算·材料科学·光子器件·光子学·无线电电子
有Li5 小时前
通过具有一致性嵌入的大语言模型实现端到端乳腺癌放射治疗计划制定|文献速递-最新论文分享
论文阅读·深度学习·分类·医学生
郭庆汝5 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
IT古董5 小时前
【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
神经网络·算法·机器学习
张较瘦_8 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习
cver1238 小时前
野生动物检测数据集介绍-5,138张图片 野生动物保护监测 智能狩猎相机系统 生态研究与调查
人工智能·pytorch·深度学习·目标检测·计算机视觉·目标跟踪
学技术的大胜嗷9 小时前
离线迁移 Conda 环境到 Windows 服务器:用 conda-pack 摆脱硬路径限制
人工智能·深度学习·yolo·目标检测·机器学习
还有糕手9 小时前
西南交通大学【机器学习实验10】
人工智能·机器学习
Akttt11 小时前
【T2I】R&B: REGION AND BOUNDARY AWARE ZERO-SHOT GROUNDED TEXT-TO-IMAGE GENERATION
人工智能·深度学习·计算机视觉·text2img