torch.nn.**和torch.nn.functional.**的区别

torch.nn.**

torch.nn.**是一个继承了torch.nn.Module的类,使用前必须先构造对象,然后再调用。如果直接使用则会报错

例如

bash 复制代码
a = torch.randn(3,4)
print(a)
sigmoid = torch.nn.Sigmoid()
a = sigmoid(a)
print(a)
a = torch.nn.Sigmoid(a)
bash 复制代码
tensor([[ 0.2462, -2.1680, -1.4064, -0.0268],
        [-0.4800, -0.4670,  1.7318,  0.3498],
        [ 0.0137, -2.1080, -0.0825, -0.1350]])
tensor([[0.5612, 0.1027, 0.1968, 0.4933],
        [0.3823, 0.3853, 0.8496, 0.5866],
        [0.5034, 0.1083, 0.4794, 0.4663]])
        Traceback (most recent call last):
        
Traceback (most recent call last):
  File "C:\文件\Llama\tmp.py", line 8, in <module>
    a = torch.nn.Sigmoid(a)
        ^^^^^^^^^^^^^^^^^^^
  File "C:\Users\90929\AppData\Local\conda\conda\envs\lce\Lib\site-packages\torch\nn\modules\module.py", line 485, in __init__
    raise TypeError(
TypeError: Sigmoid.__init__() takes 1 positional argument but 2 were given

torch.nn.functional.**

torch.nn.functional.**是一个纯数学函数,可以直接使用

bash 复制代码
a = torch.randn(3,4)
print(a)
a = torch.nn.functional.sigmoid(a)
print(a)
bash 复制代码
tensor([[-0.1516,  0.5398,  0.3226, -0.4956],
        [-0.2250,  0.6393,  0.4432,  0.4215],
        [-0.5741,  0.0689,  0.3078, -1.5994]])
tensor([[0.4622, 0.6318, 0.5799, 0.3786],
        [0.4440, 0.6546, 0.6090, 0.6039],
        [0.3603, 0.5172, 0.5763, 0.1681]])
相关推荐
千天夜1 分钟前
激活函数解析:神经网络背后的“驱动力”
人工智能·深度学习·神经网络
封步宇AIGC7 分钟前
量化交易系统开发-实时行情自动化交易-3.4.1.2.A股交易数据
人工智能·python·机器学习·数据挖掘
m0_523674219 分钟前
技术前沿:从强化学习到Prompt Engineering,业务流程管理的创新之路
人工智能·深度学习·目标检测·机器学习·语言模型·自然语言处理·数据挖掘
weixin_307779132 小时前
证明存在常数c, C > 0,使得在一系列特定条件下,某个特定投资时刻出现的概率与天数的对数成反比
人工智能·算法·机器学习
封步宇AIGC2 小时前
量化交易系统开发-实时行情自动化交易-3.4.1.6.A股宏观经济数据
人工智能·python·机器学习·数据挖掘
小言从不摸鱼2 小时前
【AI大模型】ELMo模型介绍:深度理解语言模型的嵌入艺术
人工智能·深度学习·语言模型·自然语言处理·transformer
小森( ﹡ˆoˆ﹡ )9 小时前
词嵌入方法(Word Embedding)
人工智能·机器学习·自然语言处理·nlp·word·embedding
阿牛牛阿11 小时前
多模态大模型(1)--CLIP
算法·机器学习·ai·aigc
铖铖的花嫁11 小时前
基于RNNs(LSTM, GRU)的红点位置检测(pytorch)
pytorch·gru·lstm
python15611 小时前
基于驾驶员面部特征的疲劳检测系统
python·深度学习·目标检测