torch.nn.**和torch.nn.functional.**的区别

torch.nn.**

torch.nn.**是一个继承了torch.nn.Module的类,使用前必须先构造对象,然后再调用。如果直接使用则会报错

例如

bash 复制代码
a = torch.randn(3,4)
print(a)
sigmoid = torch.nn.Sigmoid()
a = sigmoid(a)
print(a)
a = torch.nn.Sigmoid(a)
bash 复制代码
tensor([[ 0.2462, -2.1680, -1.4064, -0.0268],
        [-0.4800, -0.4670,  1.7318,  0.3498],
        [ 0.0137, -2.1080, -0.0825, -0.1350]])
tensor([[0.5612, 0.1027, 0.1968, 0.4933],
        [0.3823, 0.3853, 0.8496, 0.5866],
        [0.5034, 0.1083, 0.4794, 0.4663]])
        Traceback (most recent call last):
        
Traceback (most recent call last):
  File "C:\文件\Llama\tmp.py", line 8, in <module>
    a = torch.nn.Sigmoid(a)
        ^^^^^^^^^^^^^^^^^^^
  File "C:\Users\90929\AppData\Local\conda\conda\envs\lce\Lib\site-packages\torch\nn\modules\module.py", line 485, in __init__
    raise TypeError(
TypeError: Sigmoid.__init__() takes 1 positional argument but 2 were given

torch.nn.functional.**

torch.nn.functional.**是一个纯数学函数,可以直接使用

bash 复制代码
a = torch.randn(3,4)
print(a)
a = torch.nn.functional.sigmoid(a)
print(a)
bash 复制代码
tensor([[-0.1516,  0.5398,  0.3226, -0.4956],
        [-0.2250,  0.6393,  0.4432,  0.4215],
        [-0.5741,  0.0689,  0.3078, -1.5994]])
tensor([[0.4622, 0.6318, 0.5799, 0.3786],
        [0.4440, 0.6546, 0.6090, 0.6039],
        [0.3603, 0.5172, 0.5763, 0.1681]])
相关推荐
摸鱼仙人~1 小时前
机器学习常用评价指标
人工智能·机器学习
weixin_445238124 小时前
第R8周:RNN实现阿尔兹海默病诊断(pytorch)
人工智能·pytorch·rnn
KingDol_MIni4 小时前
ResNet残差神经网络的模型结构定义(pytorch实现)
人工智能·pytorch·神经网络
极小狐6 小时前
如何使用极狐GitLab 软件包仓库功能托管 ruby?
开发语言·数据库·人工智能·git·机器学习·gitlab·ruby
缘友一世6 小时前
深度学习系统学习系列【5】之深度学习基础(激活函数&损失函数&超参数)
人工智能·深度学习·学习
zx436 小时前
聚类后的分析:推断簇的类型
人工智能·python·机器学习·聚类
COOCC17 小时前
PyTorch 实战:从 0 开始搭建 Transformer
人工智能·pytorch·python·深度学习·算法·机器学习·transformer
闭月之泪舞7 小时前
神经网络—感知器、多层感知器
人工智能·深度学习·神经网络
985小水博一枚呀8 小时前
【EI会议推荐】2025年6月智启未来:通信导航、 机器学习、半导体与AI、数字创新领域国际研讨会总结!
人工智能·python·深度学习·机器学习
卡尔曼的BD SLAMer9 小时前
问题 | 当前计算机视觉迫切解决的问题
图像处理·人工智能·深度学习·计算机视觉·信息与通信