TransFormer--注意力机制:位置编码

TransFormer--注意力机制:位置编码

我们还是以I am good(我很好)为例。在RNN模型中,句子是逐字送入学习网络的。换言之,首先把I作为输入,接下来是am,以此类推。通过逐字地接受输入,学习网络就能完全理解整个句子。然而,Transformer网络并不遵循递归循环的模式。因此,我们不是逐字地输入句子,而是将句子中的所有词并行地输入到神经网络中。并行输入有助于缩短训练时间,同时有利于学习长期依赖。

不过,并行地将词送入Transformer,却不保留词序,它将如何理解句子的意思呢

Transformer也需要一些关于词序的信息,以便更好地理解句子。但这将如何做到呢?

对于给定的句子I am good,我们首先计算每个单词在句子中的嵌入值。嵌入维度可以表示为 d m o d e l d_{model} dmodel。比如将嵌入维度 d m o d e l d_{model} dmodel设为4,那么输入矩阵的维度将是[句子长度×嵌入维度],也就是[3 × 4]。

同样,用输入矩阵X(嵌入矩阵)表示输入句I am good。假设输入矩阵X如下图所示。

如果把输入矩阵X直接传给Transformer,那么模型是无法理解词序的。因此,需要添加一些表明词序(词的位置)的信息,以便神经网络能够理解句子的含义。所以,我们不能将输入矩阵直接传给Transformer。这里引入了一种叫作位置编码的技术,以达到上述目的。顾名思义,位置编码是指词在句子中的位置(词序)的编码。

位置编码矩阵P的维度与输入矩阵X的维度相同。在将输入矩阵直接传给Transformer之前,我们将使其包含位置编码。我们只需将位置编码矩阵P添加到输入矩阵X中,再将其作为输入送入神经网络,如下图所示。这样一来,输入矩阵不仅有词的嵌入值,还有词在句子中的位

置信息。

位置编码矩阵究竟是如何计算的呢?如下所示,Transformer论文"Attention Is All You Need"的作者使用了正弦函数来计算位置编码:

P ( p o s , 2 i ) = s i n ( p o s 1000 0 2 i / d m o d e l ) P(pos, 2i) = sin(\frac{pos}{10000^{ 2i / d_{model} }}) P(pos,2i)=sin(100002i/dmodelpos)

P ( p o s , 2 i + 1 ) = c o s ( p o s 1000 0 2 i / d m o d e l ) P(pos, 2i + 1) = cos(\frac{pos}{10000^{ 2i / d_{model} }}) P(pos,2i+1)=cos(100002i/dmodelpos)

在上面的等式中,pos表示该词在句子中的位置,i表示在输入矩阵中的 位置。下面通过一个例子来理解以上等式,如下图所示。

可以看到,在位置编码中,当i是偶数时,使用正弦函数;当i是奇数时,则使用余弦函数。通过简化矩阵中的公式,可以得出下图所示的结果。

我们知道I位于句子的第0位 ,am在第1位,good在第2位。代入pos值,我们得到下图所示的结果。

最终的位置编码矩阵P如下图所示。

只需将输入矩阵X与计算得到的位置编码矩阵P进行逐元素相加,并将得出的结果作为输入矩阵送入编码器中。

让我们回顾一下编码器架构。下图是一个编码器模块,从中我们可以看到,在将输入矩阵送入编码器之前,首先要将位置编码加入输入矩

阵中,再将其作为输入送入编码器。

以上就是位置编码的全部内容啦!

相关推荐
程序员清洒几秒前
CANN模型安全:从对抗防御到隐私保护的全栈安全实战
人工智能·深度学习·安全
island13144 分钟前
CANN ops-nn 算子库深度解析:神经网络计算引擎的底层架构、硬件映射与融合优化机制
人工智能·神经网络·架构
小白|8 分钟前
CANN与实时音视频AI:构建低延迟智能通信系统的全栈实践
人工智能·实时音视频
Kiyra8 分钟前
作为后端开发你不得不知的 AI 知识——Prompt(提示词)
人工智能·prompt
艾莉丝努力练剑11 分钟前
实时视频流处理:利用ops-cv构建高性能CV应用
人工智能·cann
程序猿追11 分钟前
深度解析CANN ops-nn仓库 神经网络算子的性能优化与实践
人工智能·神经网络·性能优化
User_芊芊君子15 分钟前
CANN_PTO_ISA虚拟指令集全解析打造跨平台高性能计算的抽象层
人工智能·深度学习·神经网络
初恋叫萱萱18 分钟前
CANN 生态安全加固指南:构建可信、鲁棒、可审计的边缘 AI 系统
人工智能·安全
alvin_200518 分钟前
python之OpenGL应用(二)Hello Triangle
python·opengl
机器视觉的发动机23 分钟前
AI算力中心的能耗挑战与未来破局之路
开发语言·人工智能·自动化·视觉检测·机器视觉