直方图均衡化及Matlab实现

文章目录

直方图均衡化

直方图均衡化是一种图像增强 技术,主要用于增强图像的对比度 ,特别是当图像的有用数据的对比度接近时效果显著。通过改变图像的直方图分布,直方图均衡化能够使图像的灰度值更加接近均匀分布,从而增加图像的整体对比度。‌

关键点及思路

直方图均衡化有两个关键点:

  • 像素的强度顺序不变,也就是说经过一个灰度映射函数后,原本低强度值的像素依然比原本高强度值的像素强度低,即单调递增
  • 变换后像素的直方图是接近均匀的,即每个等间隔灰度范围的像素个数基本相等。

这里不列举公式了(看也看不懂...),基于这两个关键点,直方图均衡化的思路其实很简单,就是基于原图像素灰度的累计概率分布(CDF)与变换后图像的累计概率分布((CDF))保持一致 ,只是变换后的图像灰度范围是0-255,一般要比原图的灰度范围广。这样就达到了把原图的一小部分的灰度范围以一种近似均匀的方式扩散到整个0-255灰度范围。

Matlab实现
matlab 复制代码
clc;clear;close all;

%%调用自定义函数进行直方图均衡化
imageName = 'lena.png';
img = imread(imageName);
histeq_img = hisuni(img);
subplot(1,2,1);
imshow(img);
title('原图');
subplot(1,2,2);
imshow(histeq_img);
title('直方图均衡化图像');

%%绘制直方图
subplot(1,2,1);
imhist(img);
title('原图直方图');
subplot(1,2,2);
imhist(histeq_img);
title('均衡化直方图');

function new_image = hisuni(image)
    % 直方图均衡化函数
    % 输入: image - 输入的灰度图像
    % 输出: new_image - 均衡化后的图像
    
    [m, n] = size(image);

    % 计算直方图
    [Counts, ~] = histcounts(image(:), 0:256)
    
    % 计算概率密度函数 (PDF)
    pdf = Counts/(m*n)
    
    % 计算累积分布函数 (CDF)
    cdf = cumsum(pdf)
    
    % 生成映射表
    mapping = uint8(cdf * 255)
    
    % 初始化新图像
    new_image = zeros(size(image), 'uint8');
    
    % 对每个像素值进行映射
    for idx = 1:255
        new_image(image == idx - 1) = mapping(idx);
    end
end

当然matlab中也有内置函数histeq函数,直接对原图矩阵调用即可进行均衡化增强。

相关推荐
B站_计算机毕业设计之家20 小时前
python手写数字识别系统 CNN算法 卷积神经网络 OpenCV和Keras模型 计算机视觉 (建议收藏)✅
python·深度学习·opencv·机器学习·计算机视觉·cnn
这张生成的图像能检测吗21 小时前
(论文速读)SpiralMLP:一个轻量级的视觉MLP架构
图像处理·人工智能·深度学习·计算机视觉·mlp框架·分类、检测、分割
CoovallyAIHub21 小时前
分割万事万物的AI,再进化!Meta SAM 3 来了,支持中文提示词!
深度学习·算法·计算机视觉
赋创小助手1 天前
英特尔确认取消 8 通道 Diamond Rapids:服务器 CPU 战局再度升级
服务器·图像处理·人工智能·深度学习·计算机视觉·自然语言处理·自动驾驶
zl_vslam1 天前
SLAM中的非线性优-3D图优化之四元数在Opencv-PNP中的应用(五)
人工智能·算法·计算机视觉
1***Q7841 天前
Docker计算机视觉应用
计算机视觉·docker·容器
王林(瑞昱Realtek,龙迅)1 天前
视频拼接,分割,矩阵技术方案介绍
图像处理·嵌入式硬件·显示器·8k显示·画面拼接
TsingtaoAI1 天前
企业实训|自动驾驶中的图像处理与感知技术——某央企汽车集团
图像处理·人工智能·自动驾驶·集成学习
王哈哈^_^1 天前
YOLO11实例分割训练任务——从构建数据集到训练的完整教程
人工智能·深度学习·算法·yolo·目标检测·机器学习·计算机视觉
搬砖者(视觉算法工程师)1 天前
自动驾驶汽车技术的工程原理与应用
人工智能·计算机视觉·自动驾驶