深度学习知识点5-马尔可夫链

马尔科夫链的思想过去所有的信息都已经被保存到了现在的状态,基于现在就可以预测未来。

The future is independent of the past given the present

马尔可夫链属于 随机过程课程(使用统计模型一些事物的过程进行预测和处理

概述:

一个用数学方法就能解释自然变化的一般规律模型,被命名为马尔科夫链(Markov Chain)。为状态空间中经过从一个状态到另一个状态的转换 的++随机过程++ ,该过程要求具备"无记忆性 ",即下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关(认为之前的所有信息都被保存到了当前的状态,因此未来与过去无关) 。这种特定类型的"无记忆性 "称作马尔可夫性质。

定义:

只要能求出系统中任意两个状态之间的转换概率,这个马尔科夫链的模型就定了。

转移概率矩阵:将事件的状态转换成概率矩阵 (又称状态分布矩阵 ),如下例:

参考:简述马尔可夫链【通俗易懂】 - 知乎

相关推荐
AI营销快线2 分钟前
AI如何每日自动生成大量高质量营销素材?
大数据·人工智能
元智启4 分钟前
企业 AI 智能体:零代码落地指南与多场景实操案例
人工智能
xiaoxiaoxiaolll9 分钟前
智能计算模拟:第一性原理+分子动力学+机器学习
人工智能·机器学习
OpenCSG11 分钟前
现代 AI 代理设计:17 种架构的系统化实战合集
人工智能·架构
KKKlucifer18 分钟前
从 “人工标注” 到 “AI 驱动”:数据分类分级技术的效率革命
大数据·人工智能·分类
九章智算云25 分钟前
短视频 / 图片不够清?SeedVR2.5 超分操作指南,一键拉满画质
人工智能·ai·大模型·aigc
哔哩哔哩技术40 分钟前
从JS云函数到MCP:打造跨平台AI Agent工具的工程实践
人工智能
aaaa_a1331 小时前
The lllustrated Transformer——阅读笔记
人工智能·深度学习·transformer
jinxinyuuuus1 小时前
文件格式转换工具:数据序列化、Web Worker与离线数据处理
人工智能·自动化