深度学习知识点5-马尔可夫链

马尔科夫链的思想过去所有的信息都已经被保存到了现在的状态,基于现在就可以预测未来。

The future is independent of the past given the present

马尔可夫链属于 随机过程课程(使用统计模型一些事物的过程进行预测和处理

概述:

一个用数学方法就能解释自然变化的一般规律模型,被命名为马尔科夫链(Markov Chain)。为状态空间中经过从一个状态到另一个状态的转换 的++随机过程++ ,该过程要求具备"无记忆性 ",即下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关(认为之前的所有信息都被保存到了当前的状态,因此未来与过去无关) 。这种特定类型的"无记忆性 "称作马尔可夫性质。

定义:

只要能求出系统中任意两个状态之间的转换概率,这个马尔科夫链的模型就定了。

转移概率矩阵:将事件的状态转换成概率矩阵 (又称状态分布矩阵 ),如下例:

参考:简述马尔可夫链【通俗易懂】 - 知乎

相关推荐
YourKing24 分钟前
yolov11n.onnx格式模型转换与图像推理
人工智能
sans_25 分钟前
NCCL的用户缓冲区注册
人工智能
sans_25 分钟前
三种视角下的Symmetric Memory,下一代HPC内存模型
人工智能
算家计算1 小时前
模糊高清修复真王炸!ComfyUI-SeedVR2-Kontext(画质修复+P图)本地部署教程
人工智能·开源·aigc
虫无涯1 小时前
LangSmith:大模型应用开发的得力助手
人工智能·langchain·llm
算家计算1 小时前
DeepSeek-R1论文登《自然》封面!首次披露更多训练细节
人工智能·资讯·deepseek
weiwenhao2 小时前
关于 nature 编程语言
人工智能·后端·开源
神经星星2 小时前
训练成本29.4万美元,DeepSeek-R1登Nature封面,首个通过权威期刊同行评审的主流大模型获好评
人工智能
神州问学2 小时前
【AI洞察】别再只想着“让AI听你话”,人类也需要学习“适应AI”!
人工智能
CoovallyAIHub2 小时前
中科大DSAI Lab团队多篇论文入选ICCV 2025,推动三维视觉与泛化感知技术突破
深度学习·算法·计算机视觉