FastGPT部署通义千问Qwen和智谱glm模型|OneAPI配置免费的第三方API

继这篇博客之后 从零开始FastGPT本地部署|Windows

有同学问,不想在多个平台申请API-Key,不好管理且要付费,有木有白嫖方案呀?

答:有啊。用硅基流动。

注册方法看这篇
【1024送福利】硅基流动送2000万token啦!撒花✿✿ 附使用教程

从零开始FastGPT本地部署|Windows 上回书说到,FastGPT通过OneAPI添加了"通义千问"大模型,使用的阿里官方的API-Key,我跟小伙伴们一样,欠费咯~

那就再配一个大模型吧。

一、OneAPI配大模型

1.1 选对话模型+嵌入模型

我这都选免费的,土豪们可以选择付费的模型

1.2 OneAPI 添加渠道和令牌

添加渠道

由于是第三方平台,这里可能测试不成功。

不过没关系,不影响后面的使用

二、FastGPT配置

2.1 修改docker-compose.yml

python 复制代码
# 硅基平台URL
- OPENAI_BASE_URL=https://api.siliconflow.cn/v1
# API-KEY
- CHAT_API_KEY=sk-pkxxxxxxcje

2.2 修改config.json

json 复制代码
"llmModels": [
    {
      "model": "Qwen/Qwen2-7B-Instruct",
      "name": "通义千问2-7b",
      "avatar": "/imgs/model/openai.svg",
      "maxContext": 8000,
      "maxResponse": 4000,
      "quoteMaxToken": 20000,
      "maxTemperature": 1,
      "charsPointsPrice": 0,
      "censor": false,
      "vision": true,
      "datasetProcess": false,
      "usedInClassify": true,
      "usedInExtractFields": true,
      "usedInToolCall": true,
      "usedInQueryExtension": true,
      "toolChoice": true,
      "functionCall": false,
      "customCQPrompt": "",
      "customExtractPrompt": "",
      "defaultSystemChatPrompt": "",
      "defaultConfig": {}
    },
	{
      "model": "THUDM/glm-4-9b-chat",
      "name": "智谱-4",
      "avatar": "/imgs/model/openai.svg",
      "maxContext": 8000,
      "maxResponse": 4000,
      "quoteMaxToken": 20000,
      "maxTemperature": 1,
      "charsPointsPrice": 0,
      "censor": false,
      "vision": true,
      "datasetProcess": false,
      "usedInClassify": true,
      "usedInExtractFields": true,
      "usedInToolCall": true,
      "usedInQueryExtension": true,
      "toolChoice": true,
      "functionCall": false,
      "customCQPrompt": "",
      "customExtractPrompt": "",
      "defaultSystemChatPrompt": "",
      "defaultConfig": {}
    }
  ],
  "vectorModels": [
    {
      "model": "BAAI/bge-large-en-v1.5", // 模型名(与OneAPI对应)
      "name": "bge-large-en-v1.5", // 模型展示名
      "avatar": "/imgs/model/openai.svg", // logo
      "charsPointsPrice": 0, // n积分/1k token
      "defaultToken": 700, // 默认文本分割时候的 token
      "maxToken": 3000, // 最大 token
      "weight": 100, // 优先训练权重
      "defaultConfig": {}, // 自定义额外参数。例如,如果希望使用 embedding3-large 的话,可以传入 dimensions:1024,来返回1024维度的向量。(目前必须小于1536维度)
      "dbConfig": {}, // 存储时的额外参数(非对称向量模型时候需要用到)
      "queryConfig": {} // 参训时的额外参数
    },
    {
      "model": "BAAI/bge-large-zh-v1.5", // 模型名(与OneAPI对应)
      "name": "bge-large-zh-v1.5", // 模型展示名
      "avatar": "/imgs/model/openai.svg",
      "charsPointsPrice": 0,
      "defaultToken": 700,
      "maxToken": 3000,
      "weight": 100,
      "defaultConfig": {
        "dimensions": 1024
      }
    }
  ],

有几个对话模型和嵌入模型,就写几个。

主要是红框部分的配置,其他参数按需修改。

2.3 重启FastGPT

如果修改前就启动了FastGPT,那就重启下

python 复制代码
docker-compose down
docker-compose up -d

三、FastGPT测试

新建一个应用

可以看到我们刚才配置的两个模型

测试效果如下:

测试成功,就可以开始其他功能的配置啦!

相关推荐
数据轨迹0013 天前
AAAI Mesorch:频域增强+自适应剪枝相结合
经验分享·笔记·facebook·oneapi·twitter
数据轨迹0014 天前
ICCV MK-UNet:多核深度可分离卷积医学分割
经验分享·笔记·facebook·oneapi·twitter
Kitfox AI4 天前
【100% AI编程一】KitfoxPay:让 NewAPI 无缝接入 Jeepay 的开源支付适配网关
开源·ai编程·oneapi·newapi·jeepay
攻城狮7号5 天前
智谱 GLM-4.7-Flash 开源并免费:让“大模型自由”提前到来
开源模型·智谱ai·长文本处理·glm-4.7-flash·ai编程模型
高性能服务器13 天前
AGI-Next 闭门峰会深度纪要:中国AI的3小时深度思辨
agent·agi·qwen·智谱ai·agi-next闭门峰会·阿里千问·模型即产品
数据轨迹00114 天前
CVPR Efficient ViM:视觉 Mamba 的轻量化
经验分享·笔记·facebook·oneapi·twitter
数据轨迹00117 天前
AAAI AMD:多尺度预测MLP反杀Transformer
经验分享·笔记·facebook·oneapi·twitter
FranzLiszt184718 天前
基于One API 将本地 Ollama 模型接入 FastGPT
langchain·fastgpt·rag·ollama·one api
数据轨迹00119 天前
CVPR DarkIR:低光图像增强与去模糊一体化
经验分享·笔记·facebook·oneapi·twitter
IT学习资源每日免费分享20 天前
Python精选视频教程资料大全
百度·微信·课程设计·oneapi·微信开放平台