FastGPT部署通义千问Qwen和智谱glm模型|OneAPI配置免费的第三方API

继这篇博客之后 从零开始FastGPT本地部署|Windows

有同学问,不想在多个平台申请API-Key,不好管理且要付费,有木有白嫖方案呀?

答:有啊。用硅基流动。

注册方法看这篇
【1024送福利】硅基流动送2000万token啦!撒花✿✿ 附使用教程

从零开始FastGPT本地部署|Windows 上回书说到,FastGPT通过OneAPI添加了"通义千问"大模型,使用的阿里官方的API-Key,我跟小伙伴们一样,欠费咯~

那就再配一个大模型吧。

一、OneAPI配大模型

1.1 选对话模型+嵌入模型

我这都选免费的,土豪们可以选择付费的模型

1.2 OneAPI 添加渠道和令牌

添加渠道

由于是第三方平台,这里可能测试不成功。

不过没关系,不影响后面的使用

二、FastGPT配置

2.1 修改docker-compose.yml

python 复制代码
# 硅基平台URL
- OPENAI_BASE_URL=https://api.siliconflow.cn/v1
# API-KEY
- CHAT_API_KEY=sk-pkxxxxxxcje

2.2 修改config.json

json 复制代码
"llmModels": [
    {
      "model": "Qwen/Qwen2-7B-Instruct",
      "name": "通义千问2-7b",
      "avatar": "/imgs/model/openai.svg",
      "maxContext": 8000,
      "maxResponse": 4000,
      "quoteMaxToken": 20000,
      "maxTemperature": 1,
      "charsPointsPrice": 0,
      "censor": false,
      "vision": true,
      "datasetProcess": false,
      "usedInClassify": true,
      "usedInExtractFields": true,
      "usedInToolCall": true,
      "usedInQueryExtension": true,
      "toolChoice": true,
      "functionCall": false,
      "customCQPrompt": "",
      "customExtractPrompt": "",
      "defaultSystemChatPrompt": "",
      "defaultConfig": {}
    },
	{
      "model": "THUDM/glm-4-9b-chat",
      "name": "智谱-4",
      "avatar": "/imgs/model/openai.svg",
      "maxContext": 8000,
      "maxResponse": 4000,
      "quoteMaxToken": 20000,
      "maxTemperature": 1,
      "charsPointsPrice": 0,
      "censor": false,
      "vision": true,
      "datasetProcess": false,
      "usedInClassify": true,
      "usedInExtractFields": true,
      "usedInToolCall": true,
      "usedInQueryExtension": true,
      "toolChoice": true,
      "functionCall": false,
      "customCQPrompt": "",
      "customExtractPrompt": "",
      "defaultSystemChatPrompt": "",
      "defaultConfig": {}
    }
  ],
  "vectorModels": [
    {
      "model": "BAAI/bge-large-en-v1.5", // 模型名(与OneAPI对应)
      "name": "bge-large-en-v1.5", // 模型展示名
      "avatar": "/imgs/model/openai.svg", // logo
      "charsPointsPrice": 0, // n积分/1k token
      "defaultToken": 700, // 默认文本分割时候的 token
      "maxToken": 3000, // 最大 token
      "weight": 100, // 优先训练权重
      "defaultConfig": {}, // 自定义额外参数。例如,如果希望使用 embedding3-large 的话,可以传入 dimensions:1024,来返回1024维度的向量。(目前必须小于1536维度)
      "dbConfig": {}, // 存储时的额外参数(非对称向量模型时候需要用到)
      "queryConfig": {} // 参训时的额外参数
    },
    {
      "model": "BAAI/bge-large-zh-v1.5", // 模型名(与OneAPI对应)
      "name": "bge-large-zh-v1.5", // 模型展示名
      "avatar": "/imgs/model/openai.svg",
      "charsPointsPrice": 0,
      "defaultToken": 700,
      "maxToken": 3000,
      "weight": 100,
      "defaultConfig": {
        "dimensions": 1024
      }
    }
  ],

有几个对话模型和嵌入模型,就写几个。

主要是红框部分的配置,其他参数按需修改。

2.3 重启FastGPT

如果修改前就启动了FastGPT,那就重启下

python 复制代码
docker-compose down
docker-compose up -d

三、FastGPT测试

新建一个应用

可以看到我们刚才配置的两个模型

测试效果如下:

测试成功,就可以开始其他功能的配置啦!

相关推荐
努力的小Qin3 小时前
oneapi私有化部署failed to get gpt-3.5-turbo token encoder解决方案
gpt-3·oneapi·fastgpt
新知图书2 天前
FastGPT工作流的节点
人工智能·fastgpt·ai agent·智能体·大模型应用开发
数据轨迹0014 天前
从频域视角重构空洞卷机
经验分享·笔记·facebook·oneapi·twitter
新知图书8 天前
FastGPT开发一个智能客服案例
人工智能·fastgpt·ai agent·智能体·大模型应用
威化饼的一隅9 天前
【大模型LLM学习】通义Agent系列学习笔记
agent·通义千问·deep research·research agent·通义agent·深度研究智能体·tongyi agent
Francek Chen11 天前
【通义千问】蓝耘原生代 | Qwen3-235B-A22B 架构创新引领性能跃升
人工智能·自然语言处理·通义千问·qwen3-235b-a22b
love530love13 天前
【笔记】Intel oneAPI 开发环境配置
人工智能·windows·笔记·oneapi·onednn·deep neural
咋吃都不胖lyh13 天前
小白教程:在Windows的WSL(Ubuntu)中手动部署one-api
wsl·oneapi
AndrewHZ22 天前
【大模型技术学习】大模型压力测试全攻略:以Qwen3-32B为例
人工智能·大模型·llm·压力测试·模型部署·通义千问·qwen3-32b
勇敢牛牛_1 个月前
【OneAPI】基金持仓截图识别API
oneapi·基金·截图识别