矩阵的对角化&特征值分解

矩阵对角化和特征值分解实际上描述的是同一个过程的不同方面。矩阵对角化 强调的是通过相似变换将矩阵 A A A转化为对角矩阵 D D D。特征值分解 强调的是如何通过矩阵的特征值和特征向量来实现这种对角化。

矩阵对角化

矩阵对角化是指将一个方阵 A A A通过相似变换转化为一个对角矩阵 D D D的过程。具体来说,如果存在一个可逆矩阵 P P P和一个对角矩阵 D D D,使得:

P − 1 A P = D P^{-1}AP = D P−1AP=D

或者等价地,

A = P D P − 1 A = PDP^{-1} A=PDP−1

这里:

  • P P P是一个由 A A A的特征向量组成的矩阵。
  • D D D是一个对角矩阵,其对角线上的元素是 A A A的特征值。

特征值分解

特征值与特征向量

对于一个 n × n n \times n n×n的方阵 A A A,如果存在一个标量 λ \lambda λ和一个非零向量 v v v,使得:

A v = λ v A v = \lambda v Av=λv

那么 λ \lambda λ称为 A A A的一个特征值,而 v v v称为对应的特征向量。特征值和特征向量揭示了矩阵 A A A在某些方向上的线性变换特性。

特征值分解

特征值分解(Eigenvalue Decomposition)是矩阵对角化的一种特殊形式。它强调的是将矩阵 A A A分解为其特征值和特征向量的过程。具体来说,特征值分解可以表示为:

A = P D P − 1 A = PDP^{-1} A=PDP−1

其中:

  • P P P是特征向量矩阵,其列向量是 A A A的特征向量。
  • D D D是对角矩阵,其对角线上的元素是 A A A的特征值。

需要注意的是,并不是所有的矩阵都能被对角化。一个矩阵能被对角化的充分必要条件是它有 n n n个线性独立的特征向量。如果一个矩阵没有足够的线性独立的特征向量,那么它不能被对角化,但可以通过其他方法(如 Jordan 标准形)进行近似对角化。

例子

假设有一个 2 × 2 2 \times 2 2×2的矩阵 A A A:

A = ( 4 1 2 3 ) A = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix} A=(4213)

我们可以通过求解特征值和特征向量来对其进行对角化或特征值分解。

  1. 求特征值

    解特征多项式 det ⁡ ( A − λ I ) = 0 \det(A - \lambda I) = 0 det(A−λI)=0:
    det ⁡ ( 4 − λ 1 2 3 − λ ) = ( 4 − λ ) ( 3 − λ ) − 2 = λ 2 − 7 λ + 10 = 0 \det \begin{pmatrix} 4 - \lambda & 1 \\ 2 & 3 - \lambda \end{pmatrix} = (4 - \lambda)(3 - \lambda) - 2 = \lambda^2 - 7\lambda + 10 = 0 det(4−λ213−λ)=(4−λ)(3−λ)−2=λ2−7λ+10=0

    解得特征值 λ 1 = 2 \lambda_1 = 2 λ1=2和 λ 2 = 5 \lambda_2 = 5 λ2=5。

  2. 求特征向量

    • 对于 λ 1 = 2 \lambda_1 = 2 λ1=2:
      ( A − 2 I ) v 1 = 0    ⟹    ( 2 1 2 1 ) ( x y ) = 0 (A - 2I)v_1 = 0 \implies \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0 (A−2I)v1=0⟹(2211)(xy)=0

      解得特征向量 v 1 = ( 1 − 2 ) v_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix} v1=(1−2)。

    • 对于 λ 2 = 5 \lambda_2 = 5 λ2=5:
      ( A − 5 I ) v 2 = 0    ⟹    ( − 1 1 2 − 2 ) ( x y ) = 0 (A - 5I)v_2 = 0 \implies \begin{pmatrix} -1 & 1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0 (A−5I)v2=0⟹(−121−2)(xy)=0

      解得特征向量 v 2 = ( 1 1 ) v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} v2=(11)。

  3. 构造矩阵 P P P和 D D D
    P = ( 1 1 − 2 1 ) , D = ( 2 0 0 5 ) P = \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 2 & 0 \\ 0 & 5 \end{pmatrix} P=(1−211),D=(2005)

  4. 验证
    P − 1 = 1 3 ( 1 − 1 2 1 ) P^{-1} = \frac{1}{3} \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} P−1=31(12−11)
    P − 1 A P = 1 3 ( 1 − 1 2 1 ) ( 4 1 2 3 ) ( 1 1 − 2 1 ) = ( 2 0 0 5 ) = D P^{-1}AP = \frac{1}{3} \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 5 \end{pmatrix} = D P−1AP=31(12−11)(4213)(1−211)=(2005)=D

相关推荐
机智的叉烧28 分钟前
前沿重器[57] | sigir24:大模型推荐系统的文本ID对齐学习
人工智能·学习·机器学习
云云3216 小时前
怎么通过亚矩阵云手机实现营销?
大数据·服务器·安全·智能手机·矩阵
姚先生976 小时前
LeetCode 54. 螺旋矩阵 (C++实现)
c++·leetcode·矩阵
云云3219 小时前
云手机方案全解析
大数据·服务器·安全·智能手机·矩阵
云云3219 小时前
云手机能用来干什么?云手机在跨境电商领域的用途
服务器·线性代数·安全·智能手机·矩阵
云云3219 小时前
云手机方案总结
服务器·线性代数·安全·智能手机·矩阵
IT古董10 小时前
【漫话机器学习系列】019.布里(莱)尔分数(Birer score)
人工智能·深度学习·机器学习
gang_unerry11 小时前
量子退火与机器学习(1):少量数据求解未知QUBO矩阵,以少见多
人工智能·python·算法·机器学习·数学建模·矩阵·量子计算
AI小白白猫12 小时前
20241230 基础数学-线性代数-(1)求解特征值(numpy, scipy)
线性代数·numpy·scipy