决策树基本 CART Python手写实现

参考资料:
https://blog.csdn.net/weixin_45666566/article/details/107954454
https://blog.csdn.net/Elenstone/article/details/105328111

代码如下:
python 复制代码
#-*- coding:utf-8 -*-
import numpy as np
import pandas as pd
import operator

def loadDataSet():
    csv = pd.read_csv(filepath_or_buffer=r'D:/PythonData/决策树.csv')
    dataSet = np.array(csv)
    labels = np.array(csv.columns)[:4]
    targets = sorted(np.unique(dataSet[:,-1:].flatten()), reverse=True)
    return dataSet, labels, targets

def calcProbabilityEnt(dataSet, targets):
    numEntries = len(dataSet)  # 数据条数
    feaCounts = 0
    fea1 = targets[0]
    for featVec in dataSet:
        if featVec[-1] == fea1:
            feaCounts +=1

    probabilityEnt = float(feaCounts) / numEntries
    return probabilityEnt    


def splitDataSet(dataSet, index, value):
    retDataSet = []
    noRetDataSet = []
    for featVec in dataSet:
        if featVec[index]  == value:
            retDataSet.append(np.concatenate((featVec[:index],featVec[index+1:])))
        if featVec[index]  != value:
            noRetDataSet.append(np.concatenate((featVec[:index],featVec[index+1:])))

    return retDataSet,noRetDataSet

def chooseBestFeatureToSplit(dataSet, targets):
    numFeatures = len(dataSet[0]) - 1
    if numFeatures == 1:
        return 0
    bestGini = 1
    bestFeatureIndex = -1
    for i in range(numFeatures):
        # 每一列中的唯一值集合
        uniqueVals = set(example[i] for example in dataSet)
        feaGini = 0
        for value in uniqueVals:
            subDataSet,noSubDataSet = splitDataSet(dataSet=dataSet, index=i,value=value)
            prod = len(subDataSet) / float(len(dataSet))
            noPord = len(noSubDataSet) / float(len(dataSet))
            probabilityEnt = calcProbabilityEnt(subDataSet, targets)
            noProbabilityEnt = calcProbabilityEnt(noSubDataSet,targets)
            feaGini = round(prod * 2 * probabilityEnt * (1 - probabilityEnt) +  (noPord * (2 * noProbabilityEnt * (1 - noProbabilityEnt))),2)
    
            if bestGini > feaGini:
                bestGini = feaGini
                bestFeatureIndex = i
    
    return bestFeatureIndex

def majorityCnt(classList):
    classCount = {}
    for vote in classList:
        try:
            classCount[vote] += 1
        except KeyError:
            classCount[vote] = 1
    
    sortedClassCount = sorted(iterable=classCount.items(),key=operator.itemgetter(1),reverse=True)
    return sortedClassCount[0][0]

def createTree(dataSet, labels,targets):
    classList = [example[-1]  for example in dataSet]
    if classList.count(classList[0]) == len(classList):
        return classList[0]
    if len(dataSet[0]) == 1:
        return majorityCnt(classList=classList)

    bestFeatIndex  = chooseBestFeatureToSplit(dataSet=dataSet,targets=targets)
    bestFeatLabel = labels[bestFeatIndex]
    np.delete(labels,bestFeatIndex)
    uniqueVals = set(example[bestFeatIndex] for example in dataSet) # 选出最优特征对应属性的唯一值
    myTree = {bestFeatLabel:{}} # 分类结果以字典形式保存
    for value in uniqueVals:
        subLabels = labels[:] # 深拷贝,拷贝后的值与原值无关(普通复制为浅拷贝,对原值或拷贝后的值的改变互相影响)
        subDataSet,noSubDataSet = splitDataSet(dataSet,bestFeatIndex,value)
        myTree[bestFeatLabel][value] = createTree(subDataSet,subLabels,targets) # 递归调用创建决策树
    return myTree
    


if __name__=='__main__':
    dataSet,labels,targets = loadDataSet()
    print(createTree(dataSet,labels,targets))
运行如果如下:
shell 复制代码
PS D:\PythonWorkSpace> & E:/anaconda3/python.exe d:/PythonWorkSpace/DecisionTreeDemo.py
{'有自己的房子': {'否': {'有工作': {'否': '不同意', '是': '同意'}}, '是': '同意'}}
相关推荐
共享家952719 分钟前
搭建 AI 聊天机器人:”我的人生我做主“
前端·javascript·css·python·pycharm·html·状态模式
疯狂的喵30 分钟前
C++编译期多态实现
开发语言·c++·算法
scx2013100434 分钟前
20260129LCA总结
算法·深度优先·图论
2301_7657031439 分钟前
C++中的协程编程
开发语言·c++·算法
m0_7487080541 分钟前
实时数据压缩库
开发语言·c++·算法
小魏每天都学习1 小时前
【算法——c/c++]
c语言·c++·算法
Hgfdsaqwr1 小时前
Python在2024年的主要趋势与发展方向
jvm·数据库·python
一晌小贪欢1 小时前
Python 测试利器:使用 pytest 高效编写和管理单元测试
python·单元测试·pytest·python3·python测试
小文数模1 小时前
2026年美赛数学建模C题完整参考论文(含模型和代码)
python·数学建模·matlab
智码未来学堂1 小时前
探秘 C 语言算法之枚举:解锁解题新思路
c语言·数据结构·算法