PaddlePaddle 开源产业级文档印章识别PaddleX-Pipeline “seal_recognition”模型 开箱即用篇(一)

AI时代到来,各行各业都在追求细分领域垂直类深度学习模型,今天给大家介绍一个PaddlePaddle旗下,基于PaddleX Pipeline 来完成印章识别的模型"seal_recognition"。

官方地址:https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/ocr_pipelines/seal_recognition.md

下面开始在本地使用PaddleX:

一、安装Python:

推荐使用conda(可选)。

Python版本:3.8.19(推荐版本)。

二、安装CUDA

无论运行pytorch、tensflow还是paddlepaddle等深度学习框架,均推荐在GPU上进行推理。若要使用GPU进行推理,请在安装CUDA前提前更新好本机的显卡驱动。

CUDA版本:11.8(推荐)

CUDA参考地址:https://developer.nvidia.com/cuda-11-8-0-download-archive

三、安装PaddlePaddle

既然我们想使用PaddlePaddle深度学习框架旗下的Pipeline,那肯定要提前安装好PaddlePaddle深度学习框架。

PaddlePaddle版本:3.0.0-beta2

PaddlePaddle参考地址:飞桨PaddlePaddle-源于产业实践的开源深度学习平台

至此,我们的基础环境已经安装完成,接下来就可以开始进行使用Pipeline了。

四、获取PaddleX

PaddleX是什么?引用官方介绍:

PaddleX 3.0 是基于飞桨框架构建的低代码开发工具,它集成了众多开箱即用的预训练模型 ,可以实现模型从训练到推理的全流程开发 ,支持国内外多款主流硬件,助力AI 开发者进行产业实践。

模型丰富一键调用 :将覆盖文本图像智能分析、OCR、目标检测、时序预测等多个关键领域的 200+ 飞桨模型 整合为 19 条模型产线 ,通过极简的 Python API 一键调用,快速体验模型效果。同时支持 20+ 单功能模块,方便开发者进行模型组合使用。

官方地址:GitHub - PaddlePaddle/PaddleX: All-in-One Development Tool based on PaddlePaddle(飞桨低代码开发工具)

简单来说,就是PaddlePaddle研发出来的一套开箱即用产品的底座,安装了PaddleX后,就可以通过几行命令来完成不同的任务,比如几行命令完成目标检测,几行命令完成文字识别等。

安装PaddleX的几种方式:

一、Wheel包安装模式:

若你只是希望快速完成模型的推理和集成,那么推荐您使用更便捷更轻量的Wheel包安装模式。快速安装轻量级的Wheel包之后,您即可基于PaddleX支持的所有模型进行推理,并能直接集成进您的项目中。

pip install https://paddle-model-ecology.bj.bcebos.com/paddlex/whl/paddlex-3.0.0b1-py3-none-any.whl

二、插件安装模式:

若您使用PaddleX的应用场景为二次开发 (例如重新训练模型、微调模型、自定义模型结构、自定义推理代码等),那么推荐您使用功能更加强大的插件安装模式。

安装您需要的PaddleX插件之后,您不仅同样能够对插件支持的模型进行推理与集成,还可以对其进行模型训练等二次开发更高级的操作。

git clone https://github.com/PaddlePaddle/PaddleX.git

cd PaddleX

pip install -e .

paddlex --install PaddleXXX # 例如PaddleOCR

五、基于PaddleX安装第一个插件:PaddleOCR

paddlex --install PaddleOCR

六、几行代码完成快速推理(调用文心一言大模型、默认不可修改,需要Access_token,按需付费。 若无需大语言模型,看查看第七条推理方式):

python 复制代码
````
        from paddlex import create_pipeline

        pipeline = create_pipeline(
            pipeline="PP-ChatOCRv3-doc",
            llm_name="ernie-3.5",
            llm_params={"api_type": "qianfan", "ak": "", "sk": ""} # 使用千帆接口,请填入您的ak与sk,否则无法调用大模型
            # llm_params={"api_type": "aistudio", "access_token": ""} # 或者使用AIStudio接口,请填入您的access_token,否则无法调用大模型
            )

        visual_result, visual_info = pipeline.visual_predict("https://paddle-model-ecology.bj.bcebos.com/paddlex/PaddleX3.0/doc_images/practical_tutorial/PP-ChatOCRv3_doc_seal/test.png")

        for res in visual_result:
            res.save_to_img("./output")
            res.save_to_html('./output')
            res.save_to_xlsx('./output')

        vector = pipeline.build_vector(visual_info=visual_info)
        chat_result = pipeline.chat(
            key_list=["印章名称"],
            visual_info=visual_info,
            vector=vector,
            )
        chat_result.print()
    ````

七、几行代码完成快速推理(无需大预言模型,支持本地化部署):

python 复制代码
 ````
        from paddlex import create_pipeline

        pipeline = create_pipeline(pipeline="seal_recognition")

        output = pipeline.predict("./test_images/1387.jpg")
        for res in output:
            res.print() ## 打印预测的结构化输出
            res.save_to_img("./output_images/") ## 保存可视化结果
    ````

八、查看结果

写在最后:下一章节,完成印章识别"seal_recognition"模型的微调与训练。

相关推荐
python算法(魔法师版)6 分钟前
深度学习深度解析:从基础到前沿
人工智能·深度学习
小王子102427 分钟前
设计模式Python版 组合模式
python·设计模式·组合模式
kakaZhui31 分钟前
【llm对话系统】大模型源码分析之 LLaMA 位置编码 RoPE
人工智能·深度学习·chatgpt·aigc·llama
struggle20251 小时前
一个开源 GenBI AI 本地代理(确保本地数据安全),使数据驱动型团队能够与其数据进行互动,生成文本到 SQL、图表、电子表格、报告和 BI
人工智能·深度学习·目标检测·语言模型·自然语言处理·数据挖掘·集成学习
佛州小李哥1 小时前
通过亚马逊云科技Bedrock打造自定义AI智能体Agent(上)
人工智能·科技·ai·语言模型·云计算·aws·亚马逊云科技
Mason Lin2 小时前
2025年1月22日(网络编程 udp)
网络·python·udp
清弦墨客2 小时前
【蓝桥杯】43697.机器人塔
python·蓝桥杯·程序算法
云空3 小时前
《DeepSeek 网页/API 性能异常(DeepSeek Web/API Degraded Performance):网络安全日志》
运维·人工智能·web安全·网络安全·开源·网络攻击模型·安全威胁分析
AIGC大时代3 小时前
对比DeepSeek、ChatGPT和Kimi的学术写作关键词提取能力
论文阅读·人工智能·chatgpt·数据分析·prompt
山晨啊84 小时前
2025年美赛B题-结合Logistic阻滞增长模型和SIR传染病模型研究旅游可持续性-成品论文
人工智能·机器学习