Streamlit + AI大模型API实现视频字幕提取

简介

在本文中,我将带你探讨如何使用Streamlit和AI大模型API来实现视频字幕提取的技术。Streamlit是一个开源的Python库,用于快速构建数据应用的Web界面,而AI大模型API,如OpenAI,提供了强大的语言处理能力,两者结合可以创建出功能强大的视频字幕提取工具。

技术实现

环境准备

首先,我们需要安装Streamlit和必要的AI大模型库。以下是安装流程:

bash 复制代码
pip install streamlit
pip install openai

视频字幕提取流程

  1. 视频下载 :在Streamlit界面中输入YouTube视频链接,使用yt-dlp下载视频。

  2. 字幕识别 :使用WhisperX进行单词级时间轴字幕识别,确保字幕与视频内容精准对齐。

  3. 字幕分割:利用NLP和GPT技术,根据句意进行字幕分割,生成符合Netflix标准的单行字幕。

  4. 翻译:GPT总结提取术语知识库,进行上下文连贯翻译,确保翻译内容自然流畅。

  5. 配音 :使用GPT-SoVITS等方法进行高质量的对齐配音,生成与原视频内容高度一致的配音效果。

  6. 一键出片:在Streamlit界面中完成所有配置后,一键生成带有高质量双语字幕和配音的视频。

代码实现

以下是使用Streamlit和OpenAI API构建视频字幕提取应用的基本代码框架:

python 复制代码
import streamlit as st
from youtube_transcript_api import YouTubeTranscriptApi
from langchain import OpenAI

# 设置Streamlit页面
st.title('视频字幕提取工具')

# 用户输入YouTube视频链接
youtube_link = st.text_input("请输入YouTube视频链接")

# 下载视频并获取字幕
def download_transcript(youtube_link):
    video_id = YouTubeTranscriptApi.get_id_from_url(youtube_link)
    transcript = YouTubeTranscriptApi.get_transcript(video_id, languages=['en'])
    return transcript

# 使用OpenAI API进行字幕翻译
def translate_transcript(transcript, target_language):
    # 此处省略具体实现细节
    return translated_transcript

# 主函数
def main():
    if st.button("提取字幕"):
        transcript = download_transcript(youtube_link)
        translated_transcript = translate_transcript(transcript, "zh")  # 假设目标语言为中文
        st.write(translated_transcript)

if __name__ == "__main__":
    main()

显示结果

使用Streamlit的st.write()函数显示翻译后的字幕结果。

AI独立开发实战

查看

相关推荐
琅琊榜首202019 分钟前
AI生成脑洞付费短篇小说:从灵感触发到内容落地
大数据·人工智能
imbackneverdie27 分钟前
近年来,我一直在用的科研工具
人工智能·自然语言处理·aigc·论文·ai写作·学术·ai工具
roman_日积跬步-终至千里1 小时前
【计算机视觉-作业1】从图像到向量:kNN数据预处理完整流程
人工智能·计算机视觉
春日见1 小时前
自动驾驶规划控制决策知识点扫盲
linux·运维·服务器·人工智能·机器学习·自动驾驶
人工智能AI技术1 小时前
【Agent从入门到实践】43 接口封装:将Agent封装为API服务,供其他系统调用
人工智能·python
hjs_deeplearning1 小时前
文献阅读篇#14:自动驾驶中的基础模型:场景生成与场景分析综述(5)
人工智能·机器学习·自动驾驶
nju_spy2 小时前
离线强化学习(一)BCQ 批量限制 Q-learning
人工智能·强化学习·cvae·离线强化学习·双 q 学习·bcq·外推泛化误差
副露のmagic2 小时前
深度学习基础复健
人工智能·深度学习
番茄大王sc2 小时前
2026年科研AI工具深度测评(一):文献调研与综述生成领域,维普科创助手领跑学术严谨性
人工智能·深度学习·考研·学习方法·论文笔记