均值方差增量计算

单次计算

μ = ∑ i = 1 n x i n \mu = \frac{\sum_{i=1}^{n} x_i}{n} μ=n∑i=1nxi
σ 2 = ∑ i = 1 n ( x i − μ ) 2 n = ∑ i = 1 n x i 2 − 2 ∑ i = 1 n x i μ + n μ 2 n = ∑ i = 1 n x i 2 − n μ 2 n = ∑ i = 1 n x i 2 n − μ 2 \begin{array}{ll} \sigma^2 &= \frac{\sum_{i=1}^{n}(x_i - \mu)^2}{n} \\ &= \frac{\sum_{i=1}^{n} x_i^2 -2\sum_{i=1}^{n} x_i\mu + n\mu^2}{n} \\ &= \frac{\sum_{i=1}^{n} x_i^2 - n\mu^2}{n} \\ &= \frac{\sum_{i=1}^{n} x_i^2}{n} - \mu^2 \end{array} σ2=n∑i=1n(xi−μ)2=n∑i=1nxi2−2∑i=1nxiμ+nμ2=n∑i=1nxi2−nμ2=n∑i=1nxi2−μ2

增量计算

指标 第一批次 第二批次 合并
总数 n 1 n_1 n1 n 2 n_2 n2 n 1 + n 2 n_1+n_2 n1+n2
均值 μ 1 \mu_1 μ1 μ 2 \mu_2 μ2 n 1 μ 1 + n 2 μ 2 n 1 + n 2 \frac{n_1 \mu_1 + n_2\mu_2}{n_1 + n_2} n1+n2n1μ1+n2μ2
方差 σ 1 \sigma_1 σ1 σ 2 \sigma_2 σ2 ?
∑ x i 2 \sum x_i^2 ∑xi2 n 1 σ 1 2 + n 1 μ 1 2 n_1 \sigma_1^2 + n_1 \mu_1^2 n1σ12+n1μ12 n 2 σ 2 2 + n 2 μ 2 2 n_2 \sigma_2^2 + n_2 \mu_2^2 n2σ22+n2μ22 n 1 σ 1 2 + n 1 μ 1 2 + n 2 σ 2 2 + n 2 μ 2 2 n_1 \sigma_1^2 + n_1 \mu_1^2 + n_2 \sigma_2^2 + n_2 \mu_2^2 n1σ12+n1μ12+n2σ22+n2μ22

σ 2 = ∑ i = 1 n x i 2 n − μ 2 = n 1 σ 1 2 + n 1 μ 1 2 + n 2 σ 2 2 + n 2 μ 2 2 n 1 + n 2 − ( n 1 μ 1 + n 2 μ 2 n 1 + n 2 ) 2 = ( n 1 + n 2 ) ( n 1 σ 1 2 + n 1 μ 1 2 + n 2 σ 2 2 + n 2 μ 2 2 ) − ( n 1 μ 1 + n 2 μ 2 ) 2 ( n 1 + n 2 ) 2 = n 1 σ 1 2 + n 2 σ 2 2 n 1 + n 2 + n 1 n 2 μ 1 2 + n 1 n 2 μ 2 2 − 2 n 1 n 2 μ 1 μ 2 ( n 1 + n 2 ) 2 = n 1 σ 1 2 + n 2 σ 2 2 n 1 + n 2 + n 1 n 2 ( μ 1 − μ 2 ) 2 ( n 1 + n 2 ) 2 \begin{array}{ll} \sigma^2 &= \frac{\sum_{i=1}^{n} x_i^2}{n} - \mu^2 \\ &= \frac{n_1 \sigma_1^2 + n_1 \mu_1^2 + n_2 \sigma_2^2 + n_2 \mu_2^2}{n_1+n_2} - (\frac{n_1 \mu_1 + n_2\mu_2}{n_1 + n_2})^2 \\ &= \frac{(n_1 + n_2)(n_1 \sigma_1^2 + n_1 \mu_1^2 + n_2 \sigma_2^2 + n_2 \mu_2^2) - (n_1 \mu_1 + n_2\mu_2)^2}{(n_1 + n_2)^2} \\ &= \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{n_1 + n_2} + \frac{ n_1n_2\mu_1^2 + n_1n_2\mu_2^2 - 2n_1n_2\mu_1\mu_2}{(n_1 +n_2)^2} \\ &= \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{n_1 + n_2} + \frac{ n_1n_2(\mu_1 - \mu_2)^2 }{(n_1 +n_2)^2} \end{array} σ2=n∑i=1nxi2−μ2=n1+n2n1σ12+n1μ12+n2σ22+n2μ22−(n1+n2n1μ1+n2μ2)2=(n1+n2)2(n1+n2)(n1σ12+n1μ12+n2σ22+n2μ22)−(n1μ1+n2μ2)2=n1+n2n1σ12+n2σ22+(n1+n2)2n1n2μ12+n1n2μ22−2n1n2μ1μ2=n1+n2n1σ12+n2σ22+(n1+n2)2n1n2(μ1−μ2)2

方差的增量来自均值漂移

相关推荐
初级炼丹师(爱说实话版)5 分钟前
2025算法八股——深度学习——优化器小结
人工智能·深度学习·算法
努力的小帅22 分钟前
C++_哈希
开发语言·c++·学习·算法·哈希算法·散列表
Christo342 分钟前
TFS-2023《Fuzzy Clustering With Knowledge Extraction and Granulation》
人工智能·算法·机器学习·支持向量机
过河卒_zh156676643 分钟前
AI内容标识新规实施后,大厂AI用户协议有何变化?(二)百度系
人工智能·算法·aigc·算法备案·生成合成类算法备案
薰衣草23331 小时前
滑动窗口(2)——不定长
python·算法·leetcode
金融小师妹3 小时前
基于哈塞特独立性表态的AI量化研究:美联储政策独立性的多维验证
大数据·人工智能·算法
纪元A梦6 小时前
贪心算法应用:化工反应器调度问题详解
算法·贪心算法
深圳市快瞳科技有限公司7 小时前
小场景大市场:猫狗识别算法在宠物智能设备中的应用
算法·计算机视觉·宠物
liulilittle7 小时前
OPENPPP2 —— IP标准校验和算法深度剖析:从原理到SSE2优化实现
网络·c++·网络协议·tcp/ip·算法·ip·通信
superlls10 小时前
(算法 哈希表)【LeetCode 349】两个数组的交集 思路笔记自留
java·数据结构·算法