【C++ 算法进阶】算法提升十五

股票问题1 (动态规划)

题目

本题为LC原题 题目如下

题目分析

因为股票肯定要有卖出的时机 所以说我们可以围绕这一点来进行动态规划

我们设置一个dp数组 假设每个位置的dp值就是当前卖出股票能获利的最大值

而卖出能获利的最大值肯定要前面以最少的价格买入

所以说我们需要一个min来继续前面能买股票的最小值

代码

cpp 复制代码
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        vector<int> dp(prices.size() , 0);
        dp[0] = 0;
        int minp = prices[0];
        for (int i = 1; i < prices.size(); i++) {
            dp[i] = prices[i] - minp;
            if (dp[i] < 0) {
                dp[i] = 0;
            }
            if (prices[i] < minp) {
                minp = prices[i];
            }
        }

        int ans = 0;
        for (auto x : dp) {
            ans = max(x , ans);
        }

        return ans;
    }
};

股票问题2 (动态规划)

题目

本题为LC原题 题目如下

题目分析

本题的含义就是让我们抓住每一波的行情 也就是说一旦股票有升值的区间 我们就能够从该区间获利

那么问题就变成了 股票升值的区间有多少

从而就可以转化为计算出相邻两个股票升值多少 最后将所有结果一加就能得出最终答案了

代码

cpp 复制代码
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        vector<int> dp(prices.size() , 0);
        dp[0] = 0;
        int minp = prices[0];
        for (int i = 1; i < prices.size(); i++) {
            dp[i] = prices[i] - minp;
            if (dp[i] < 0) {
                dp[i] = 0;
            }
            if (prices[i] < minp) {
                minp = prices[i];
            }
        }

        int ans = 0;
        for (auto x : dp) {
            ans = max(x , ans);
        }

        return ans;
    }
};

股票问题3 4(动态规划)

3 4 问题的本质是一题 第三题是第四题的特化版本 所以说我们只看第四题

题目

本题为LC原题 题目如下

题目分析

这是一个从左到右范围尝试模型 我们只需要加上一个K次的业务限制就能完成

首先分析下如果是0次交易我们获得利润是多少 如果只能在第0天交易利润是多少呢?

接下来分析普遍位置 比如说 dp[8][3]

  1. 它可能是8位置不参与交易 在0~7位置交易了三次
  2. 它可能是在8位置卖 在7位置买
  3. 它可能是在8位置卖 在6位置买
  4. ...

接着我们找到上面所有可能性的最大值即可

代码

cpp 复制代码
class Solution {
public:
int maxProfit(int k, vector<int>& prices) {
    if (prices.empty()) return 0;
    int n = prices.size();
    
    if (k >= n / 2) {  // 当交易次数 k 大于等于 n/2 时,相当于可以无限次交易
        int maxProfit = 0;
        for (int i = 1; i < n; i++) {
            if (prices[i] > prices[i - 1]) {
                maxProfit += prices[i] - prices[i - 1];
            }
        }
        return maxProfit;
    }
    
    vector<vector<int>> dp(k + 1, vector<int>(n, 0));
    
    for (int i = 1; i <= k; i++) {
        int maxDiff = -prices[0];  // 初始化最大差值
        for (int j = 1; j < n; j++) {
            dp[i][j] = max(dp[i][j - 1], prices[j] + maxDiff);
            maxDiff = max(maxDiff, dp[i - 1][j] - prices[j]);
        }
    }
    
    return dp[k][n - 1];
}
};
相关推荐
mjhcsp16 分钟前
MATLAB 疑难问题诊疗:从常见报错到深度优化的全流程指南
开发语言·matlab
Lynnxiaowen22 分钟前
今天我们开始学习python语句和模块
linux·运维·开发语言·python·学习
逐步前行30 分钟前
C标准库--浮点<float.h>
c语言·开发语言
小O的算法实验室31 分钟前
2022年ASOC SCI2区TOP,基于竞争与合作策略的金字塔粒子群算法PPSO,深度解析+性能实测,深度解析+性能实测
算法·论文复现·智能算法·智能算法改进
深耕AI40 分钟前
MFC + OpenCV 图像预览显示不全中断问题解决:GDI行填充详解
c++·opencv·mfc
zoyation43 分钟前
多线程简介和在JAVA中应用
java·开发语言
南莺莺43 分钟前
邻接矩阵的基本操作
数据结构·算法··邻接矩阵
余辉zmh1 小时前
【C++篇】:ServiceBus RPC 分布式服务总线框架项目
开发语言·c++·rpc
水饺编程1 小时前
第3章,[标签 Win32] :窗口类03,窗口过程函数字段
c语言·c++·windows·visual studio
Tony Bai1 小时前
释放 Go 的极限潜能:CPU 缓存友好的数据结构设计指南
开发语言·后端·缓存·golang