spark.default.parallelism 在什么时候起作用,与spark.sql.shuffle.partitions有什么异同点?

spark.default.parallelismspark.sql.shuffle.partitions 是 Spark 中两个控制并行度的配置参数,但它们作用的场景和用途不同:

spark.default.parallelism

  • 用途spark.default.parallelism 用于控制 RDD 中的默认分区数。
  • 适用场景 :在使用 SparkContext.parallelize 或者执行非 Shuffle 类操作(例如 mapfilter)创建 RDD 时,如果未显式指定分区数,那么 Spark 会用 spark.default.parallelism 的值作为分区数量。
  • 默认值 :通常,spark.default.parallelism 会根据集群中的 CPU 核心数来决定,通常是 SparkContext.defaultParallelism 的 2 倍,即每个核对应 2 个分区。
  • 作用时间:主要影响非 Spark SQL 操作的 RDD,并在无指定分区数时起作用。

spark.sql.shuffle.partitions

  • 用途spark.sql.shuffle.partitions 用于控制 Spark SQL 查询中 Shuffle 阶段的分区数。
  • 适用场景 :在执行 Spark SQL 或 DataFrame API 操作时(如 groupByjoinorderBy 等涉及 Shuffle 的操作),Spark 会依据 spark.sql.shuffle.partitions 的值来决定 Shuffle 阶段的分区数量。
  • 默认值:该参数的默认值是 200,但可以根据数据规模、集群资源等进行调整,以优化性能。
  • 作用时间:此参数仅影响 Spark SQL 的 Shuffle 操作,与 RDD 操作无关。

异同点总结

  • 异同
    • spark.default.parallelism 主要影响 RDD 的初始并行度,而 spark.sql.shuffle.partitions 则专门控制 Spark SQL 中的 Shuffle 分区数。
    • 前者在非 SQL 的 RDD 操作中起作用,后者则仅对 SQL 或 DataFrame API 中的 Shuffle 操作生效。
  • 配置建议
    • 如果以 RDD 为主,则可以根据集群大小和任务负载调整 spark.default.parallelism
    • 如果以 SQL 和 DataFrame 操作为主,特别是需要进行大量 Shuffle 的场景,可以适当调整 spark.sql.shuffle.partitions 来优化性能(如减少分区数以降低小任务开销,或增加分区数以加快数据处理速度)。
相关推荐
数据科学小丫7 小时前
数据分析与FineBI介绍
大数据·数据分析·finebi
ALex_zry8 小时前
Git大型仓库推送失败问题完整解决方案
大数据·git·elasticsearch
二进制coder9 小时前
Git Fork 开发全流程教程
大数据·git·elasticsearch
天硕国产存储技术站13 小时前
DualPLP 双重掉电保护赋能 天硕工业级SSD筑牢关键领域安全存储方案
大数据·人工智能·安全·固态硬盘
雷文成.思泉软件13 小时前
以ERP为核心、企微为门户,实现一体化集成
大数据·低代码·创业创新
SuperHeroWu714 小时前
【HarmonyOS 6】UIAbility跨设备连接详解(分布式软总线运用)
分布式·华为·harmonyos·鸿蒙·连接·分布式协同·跨设备链接
杜子不疼.14 小时前
【探索实战】从0到1打造分布式云原生平台:Kurator全栈实践指南
分布式·云原生
东哥说-MES|从入门到精通14 小时前
数字化部分内容 | 十四五年规划和2035年远景目标纲要(新华社正式版)
大数据·人工智能·数字化转型·mes·数字化工厂·2035·十四五规划
南飞测绘视界15 小时前
上市公司绿色专利申请、授权数据(1999-2024年)
大数据·专利·上市公司
一个天蝎座 白勺 程序猿16 小时前
KingbaseES在政务领域的应用实践——武汉人社大数据平台“数字化服务新模式”
大数据·数据库·政务·kingbasees·金仓数据库