spark.default.parallelism 在什么时候起作用,与spark.sql.shuffle.partitions有什么异同点?

spark.default.parallelismspark.sql.shuffle.partitions 是 Spark 中两个控制并行度的配置参数,但它们作用的场景和用途不同:

spark.default.parallelism

  • 用途spark.default.parallelism 用于控制 RDD 中的默认分区数。
  • 适用场景 :在使用 SparkContext.parallelize 或者执行非 Shuffle 类操作(例如 mapfilter)创建 RDD 时,如果未显式指定分区数,那么 Spark 会用 spark.default.parallelism 的值作为分区数量。
  • 默认值 :通常,spark.default.parallelism 会根据集群中的 CPU 核心数来决定,通常是 SparkContext.defaultParallelism 的 2 倍,即每个核对应 2 个分区。
  • 作用时间:主要影响非 Spark SQL 操作的 RDD,并在无指定分区数时起作用。

spark.sql.shuffle.partitions

  • 用途spark.sql.shuffle.partitions 用于控制 Spark SQL 查询中 Shuffle 阶段的分区数。
  • 适用场景 :在执行 Spark SQL 或 DataFrame API 操作时(如 groupByjoinorderBy 等涉及 Shuffle 的操作),Spark 会依据 spark.sql.shuffle.partitions 的值来决定 Shuffle 阶段的分区数量。
  • 默认值:该参数的默认值是 200,但可以根据数据规模、集群资源等进行调整,以优化性能。
  • 作用时间:此参数仅影响 Spark SQL 的 Shuffle 操作,与 RDD 操作无关。

异同点总结

  • 异同
    • spark.default.parallelism 主要影响 RDD 的初始并行度,而 spark.sql.shuffle.partitions 则专门控制 Spark SQL 中的 Shuffle 分区数。
    • 前者在非 SQL 的 RDD 操作中起作用,后者则仅对 SQL 或 DataFrame API 中的 Shuffle 操作生效。
  • 配置建议
    • 如果以 RDD 为主,则可以根据集群大小和任务负载调整 spark.default.parallelism
    • 如果以 SQL 和 DataFrame 操作为主,特别是需要进行大量 Shuffle 的场景,可以适当调整 spark.sql.shuffle.partitions 来优化性能(如减少分区数以降低小任务开销,或增加分区数以加快数据处理速度)。
相关推荐
计算机源码社3 小时前
分享一个基于Hadoop+spark的超市销售数据分析与可视化系统,超市顾客消费行为分析系统的设计与实现
大数据·hadoop·数据分析·spark·计算机毕业设计源码·计算机毕设选题·大数据选题推荐
zskj_zhyl3 小时前
银发经济时代:科技赋能养老,温情守护晚年,让老人不再孤独无助
大数据·人工智能·科技·生活
Giser探索家4 小时前
低空智航平台技术架构深度解析:如何用AI +空域网格破解黑飞与安全管控难题
大数据·服务器·前端·数据库·人工智能·安全·架构
码界筑梦坊4 小时前
135-基于Spark的抖音数据分析热度预测系统
大数据·python·数据分析·spark·毕业设计·echarts
斯普信专业组5 小时前
Rabbitmq+STS+discovery_k8s +localpv部署排坑详解
分布式·kubernetes·rabbitmq
weixin_443290696 小时前
【论文阅读-Part1】PIKE-RAG: sPecIalized KnowledgE and Rationale Augmented Generation
大数据·论文阅读
拓端研究室6 小时前
专题:2025抖音电商与微短剧行业研究报告|附150+份报告PDF汇总下载
大数据·人工智能
Qlittleboy7 小时前
tp5集成elasticsearch笔记
大数据·笔记·elasticsearch
老姜洛克10 小时前
大数据-Hadoop(一)安装和部署
大数据
财经三剑客10 小时前
吉利汽车7月销量超23.7万辆 同比增长58%
大数据·汽车