2025 - 生信信息学 - GEO数据分析 - RF分析(随机森林)

GEO数据分析 - RF分析(随机森林)


01 准备数据文件

r 复制代码
#install.packages("randomForest")


#引用包
library(randomForest)
set.seed(123456)

inputFile="diffGeneExp.txt"       #输入文件
setwd("/Users/wangyang/Desktop/BCBM/02randomForest-ANN")      #设置工作目录

#读取输入文件
data=read.table(inputFile, header=T, sep="\t", check.names=F, row.names=1)
data=t(data)
group=gsub("(.*)\\_(.*)", "\\2", row.names(data))

#随机森林树
rf=randomForest(as.factor(group)~., data=data, ntree=500)
pdf(file="forest.pdf", width=6, height=6)
plot(rf, main="Random forest", lwd=2)
dev.off()

#找出误差最小的点
optionTrees=which.min(rf$err.rate[,1])
optionTrees
rf2=randomForest(as.factor(group)~., data=data, ntree=optionTrees)

#查看基因的重要性
importance=importance(x=rf2)

#绘制基因的重要性图
pdf(file="geneImportance.pdf", width=6.2, height=7.8)
varImpPlot(rf2, main="")
dev.off()

#挑选疾病特征基因
rfGenes=importance[order(importance[,"MeanDecreaseGini"], decreasing = TRUE),]
rfGenes=names(rfGenes[rfGenes>1])     #挑选重要性评分大于1的基因
#rfGenes=names(rfGenes[1:30])         #挑选重要性评分最高的30个基因
write.table(rfGenes, file="rfGenes.txt", sep="\t", quote=F, col.names=F, row.names=F)

#输出重要基因的表达量
sigExp=t(data[,rfGenes])
sigExpOut=rbind(ID=colnames(sigExp),sigExp)
write.table(sigExpOut, file="rfGeneExp.txt", sep="\t", quote=F, col.names=F)
相关推荐
青瓷程序设计2 小时前
动物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
F_D_Z2 小时前
数据集相关类代码回顾理解 | sns.distplot\%matplotlib inline\sns.scatterplot
python·深度学习·matplotlib
金智维科技官方3 小时前
RPA财务机器人为企业高质量发展注入动能
人工智能·机器人·rpa·财务
沫儿笙3 小时前
安川机器人tag焊接怎么节省保护气
人工智能·物联网·机器人
2501_941147423 小时前
人工智能赋能智慧教育互联网应用:智能学习与教育管理优化实践探索》
人工智能
yLDeveloper3 小时前
一只菜鸟学机器学习的日记:入门分布偏移
机器学习·dive into deep learning
阿龙AI日记3 小时前
详解Transformer04:Decoder的结构
人工智能·深度学习·自然语言处理
爱写代码的小朋友3 小时前
“数字镜像”与认知负能者:生成式AI个性化学习支持者的协同构建与伦理规制研究
人工智能
找方案3 小时前
新型智慧城市城市大数据应用解决方案
人工智能·智慧城市
K***72844 小时前
开源模型应用落地-工具使用篇-Spring AI-Function Call(八)
人工智能·spring·开源