2025 - 生信信息学 - GEO数据分析 - RF分析(随机森林)

GEO数据分析 - RF分析(随机森林)


01 准备数据文件

r 复制代码
#install.packages("randomForest")


#引用包
library(randomForest)
set.seed(123456)

inputFile="diffGeneExp.txt"       #输入文件
setwd("/Users/wangyang/Desktop/BCBM/02randomForest-ANN")      #设置工作目录

#读取输入文件
data=read.table(inputFile, header=T, sep="\t", check.names=F, row.names=1)
data=t(data)
group=gsub("(.*)\\_(.*)", "\\2", row.names(data))

#随机森林树
rf=randomForest(as.factor(group)~., data=data, ntree=500)
pdf(file="forest.pdf", width=6, height=6)
plot(rf, main="Random forest", lwd=2)
dev.off()

#找出误差最小的点
optionTrees=which.min(rf$err.rate[,1])
optionTrees
rf2=randomForest(as.factor(group)~., data=data, ntree=optionTrees)

#查看基因的重要性
importance=importance(x=rf2)

#绘制基因的重要性图
pdf(file="geneImportance.pdf", width=6.2, height=7.8)
varImpPlot(rf2, main="")
dev.off()

#挑选疾病特征基因
rfGenes=importance[order(importance[,"MeanDecreaseGini"], decreasing = TRUE),]
rfGenes=names(rfGenes[rfGenes>1])     #挑选重要性评分大于1的基因
#rfGenes=names(rfGenes[1:30])         #挑选重要性评分最高的30个基因
write.table(rfGenes, file="rfGenes.txt", sep="\t", quote=F, col.names=F, row.names=F)

#输出重要基因的表达量
sigExp=t(data[,rfGenes])
sigExpOut=rbind(ID=colnames(sigExp),sigExp)
write.table(sigExpOut, file="rfGeneExp.txt", sep="\t", quote=F, col.names=F)
相关推荐
island13143 分钟前
CANN ops-nn 算子库深度解析:神经网络计算引擎的底层架构、硬件映射与融合优化机制
人工智能·神经网络·架构
小白|7 分钟前
CANN与实时音视频AI:构建低延迟智能通信系统的全栈实践
人工智能·实时音视频
Kiyra7 分钟前
作为后端开发你不得不知的 AI 知识——Prompt(提示词)
人工智能·prompt
艾莉丝努力练剑10 分钟前
实时视频流处理:利用ops-cv构建高性能CV应用
人工智能·cann
程序猿追11 分钟前
深度解析CANN ops-nn仓库 神经网络算子的性能优化与实践
人工智能·神经网络·性能优化
User_芊芊君子14 分钟前
CANN_PTO_ISA虚拟指令集全解析打造跨平台高性能计算的抽象层
人工智能·深度学习·神经网络
初恋叫萱萱17 分钟前
CANN 生态安全加固指南:构建可信、鲁棒、可审计的边缘 AI 系统
人工智能·安全
机器视觉的发动机23 分钟前
AI算力中心的能耗挑战与未来破局之路
开发语言·人工智能·自动化·视觉检测·机器视觉
铁蛋AI编程实战26 分钟前
通义千问 3.5 Turbo GGUF 量化版本地部署教程:4G 显存即可运行,数据永不泄露
java·人工智能·python
HyperAI超神经30 分钟前
在线教程|DeepSeek-OCR 2公式/表格解析同步改善,以低视觉token成本实现近4%的性能跃迁
开发语言·人工智能·深度学习·神经网络·机器学习·ocr·创业创新