2025 - 生信信息学 - GEO数据分析 - RF分析(随机森林)

GEO数据分析 - RF分析(随机森林)


01 准备数据文件

r 复制代码
#install.packages("randomForest")


#引用包
library(randomForest)
set.seed(123456)

inputFile="diffGeneExp.txt"       #输入文件
setwd("/Users/wangyang/Desktop/BCBM/02randomForest-ANN")      #设置工作目录

#读取输入文件
data=read.table(inputFile, header=T, sep="\t", check.names=F, row.names=1)
data=t(data)
group=gsub("(.*)\\_(.*)", "\\2", row.names(data))

#随机森林树
rf=randomForest(as.factor(group)~., data=data, ntree=500)
pdf(file="forest.pdf", width=6, height=6)
plot(rf, main="Random forest", lwd=2)
dev.off()

#找出误差最小的点
optionTrees=which.min(rf$err.rate[,1])
optionTrees
rf2=randomForest(as.factor(group)~., data=data, ntree=optionTrees)

#查看基因的重要性
importance=importance(x=rf2)

#绘制基因的重要性图
pdf(file="geneImportance.pdf", width=6.2, height=7.8)
varImpPlot(rf2, main="")
dev.off()

#挑选疾病特征基因
rfGenes=importance[order(importance[,"MeanDecreaseGini"], decreasing = TRUE),]
rfGenes=names(rfGenes[rfGenes>1])     #挑选重要性评分大于1的基因
#rfGenes=names(rfGenes[1:30])         #挑选重要性评分最高的30个基因
write.table(rfGenes, file="rfGenes.txt", sep="\t", quote=F, col.names=F, row.names=F)

#输出重要基因的表达量
sigExp=t(data[,rfGenes])
sigExpOut=rbind(ID=colnames(sigExp),sigExp)
write.table(sigExpOut, file="rfGeneExp.txt", sep="\t", quote=F, col.names=F)
相关推荐
九章云极AladdinEdu11 分钟前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
人工智能训练师1 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
大数据CLUB2 小时前
基于spark的澳洲光伏发电站选址预测
大数据·hadoop·分布式·数据分析·spark·数据开发
cxr8283 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
研梦非凡3 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
幂简集成3 小时前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发
龙腾-虎跃3 小时前
FreeSWITCH FunASR语音识别模块
人工智能·语音识别·xcode
智慧地球(AI·Earth)3 小时前
给AI配一台手机+电脑?智谱AutoGLM上线!
人工智能·智能手机·电脑
Godspeed Zhao3 小时前
自动驾驶中的传感器技术46——Radar(7)
人工智能·机器学习·自动驾驶
limengshi1383924 小时前
机器学习面试:请介绍几种常用的学习率衰减方式
人工智能·学习·机器学习