2025 - 生信信息学 - GEO数据分析 - RF分析(随机森林)

GEO数据分析 - RF分析(随机森林)


01 准备数据文件

r 复制代码
#install.packages("randomForest")


#引用包
library(randomForest)
set.seed(123456)

inputFile="diffGeneExp.txt"       #输入文件
setwd("/Users/wangyang/Desktop/BCBM/02randomForest-ANN")      #设置工作目录

#读取输入文件
data=read.table(inputFile, header=T, sep="\t", check.names=F, row.names=1)
data=t(data)
group=gsub("(.*)\\_(.*)", "\\2", row.names(data))

#随机森林树
rf=randomForest(as.factor(group)~., data=data, ntree=500)
pdf(file="forest.pdf", width=6, height=6)
plot(rf, main="Random forest", lwd=2)
dev.off()

#找出误差最小的点
optionTrees=which.min(rf$err.rate[,1])
optionTrees
rf2=randomForest(as.factor(group)~., data=data, ntree=optionTrees)

#查看基因的重要性
importance=importance(x=rf2)

#绘制基因的重要性图
pdf(file="geneImportance.pdf", width=6.2, height=7.8)
varImpPlot(rf2, main="")
dev.off()

#挑选疾病特征基因
rfGenes=importance[order(importance[,"MeanDecreaseGini"], decreasing = TRUE),]
rfGenes=names(rfGenes[rfGenes>1])     #挑选重要性评分大于1的基因
#rfGenes=names(rfGenes[1:30])         #挑选重要性评分最高的30个基因
write.table(rfGenes, file="rfGenes.txt", sep="\t", quote=F, col.names=F, row.names=F)

#输出重要基因的表达量
sigExp=t(data[,rfGenes])
sigExpOut=rbind(ID=colnames(sigExp),sigExp)
write.table(sigExpOut, file="rfGeneExp.txt", sep="\t", quote=F, col.names=F)
相关推荐
极客学术工坊2 小时前
2023年第二十届五一数学建模竞赛-A题 无人机定点投放问题-基于抛体运动的无人机定点投放问题研究
人工智能·机器学习·数学建模·启发式算法
Theodore_10223 小时前
深度学习(9)导数与计算图
人工智能·深度学习·机器学习·矩阵·线性回归
PPIO派欧云4 小时前
PPIO上新GPU实例模板,一键部署PaddleOCR-VL
人工智能
TGITCIC5 小时前
金融RAG落地之痛:不在模型,而在数据结构
人工智能·ai大模型·ai agent·ai智能体·开源大模型·金融ai·金融rag
极客学术工坊7 小时前
2022年第十二届MathorCup高校数学建模挑战赛-D题 移动通信网络站址规划和区域聚类问题
机器学习·数学建模·启发式算法·聚类
chenzhiyuan20189 小时前
《十五五规划》下的AI边缘计算机遇:算力下沉与工业智能化
人工智能·边缘计算
whaosoft-1439 小时前
51c深度学习~合集11
人工智能
Tiandaren9 小时前
大模型应用03 || 函数调用 Function Calling || 概念、思想、流程
人工智能·算法·microsoft·数据分析
领航猿1号9 小时前
Pytorch 内存布局优化:Contiguous Memory
人工智能·pytorch·深度学习·机器学习
综合热讯10 小时前
宠智灵宠物识别AI:从犬猫到鸟鱼的全生态智能识别
人工智能·宠物