深度学习:循环神经网络的计算复杂度,顺序操作和最大路径长度

当更新循环神经网络的隐状态时,d × d权重矩阵和d维隐状态的乘法计算复杂度为O(d2)。由于序列长度为n,因此循环神经网络层的计算复杂度为O(nd2)。根据 图10.6.1,有O(n)个顺序操作无法并行化,最大路径长度也是O(n)。

循环神经网络的隐状态更新

在循环神经网络中,隐状态的更新公式通常为:

h(t)=σ(Wh(t−1)+Ux(t)+b)

其中:

h(t) 是时间步 t 的隐状态。

W是隐状态到隐状态的权重矩阵,大小为 d×d。

h(t−1)是时间步 t−1的隐状态,大小为 d。

U是输入到隐状态的权重矩阵,大小为 d×d。

x(t)是时间步 t的输入,大小为 d。

b是偏置向量,大小为 d。

σ是激活函数。

计算复杂度

  • 权重矩阵和隐状态的乘法:

    隐状态的更新涉及到 Wh(t−1)的乘法操作。假设 W 的大小为 d×d,h(t−1)的大小为 d,那么乘法的计算复杂度为 O(d2)。

  • 序列长度 n:

    对于长度为 n 的序列,隐状态的更新需要进行 n 次。每次更新都需要进行 Wh(t−1)的乘法操作,因此总的计算复杂度为 O(nd2)。

顺序操作和最大路径长度

  • 顺序操作:

    在循环神经网络中,隐状态的更新是按时间步顺序进行的。每个时间步的隐状态依赖于前一个时间步的隐状态,因此无法并行化。

    对于长度为 n 的序列,有 n个顺序操作无法并行化。

  • 最大路径长度:

    最大路径长度是指信息从输入层传递到输出层所需经过的最大时间步数。在循环神经网络中,信息需要按时间步顺序传递,因此最大路径长度为 O(n)。

相关推荐
阿林来了5 分钟前
Flutter三方库适配OpenHarmony【flutter_speech】— 语音识别启动与参数配置
人工智能·flutter·语音识别·harmonyos
软件算法开发6 分钟前
基于火烈鸟搜索算法的LSTM网络模型(FSA-LSTM)的一维时间序列预测matlab仿真
人工智能·rnn·matlab·lstm·一维时间序列预测·火烈鸟搜索算法·fsa-lstm
永霖光电_UVLED8 小时前
NUBURU启动Q1阶段,实现40套高功率蓝光激光系统的量产
大数据·人工智能
RFG20128 小时前
20、详解Dubbo框架:消费方如何动态获取服务提供方地址?【微服务架构入门】
java·人工智能·后端·微服务·云原生·架构·dubbo
紫微AI9 小时前
适用于代理Agents的语言
人工智能·agents·新语言
CCPC不拿奖不改名9 小时前
虚拟机基础:在VMware WorkStation上安装Linux为容器化部署打基础
linux·运维·服务器·人工智能·milvus·知识库搭建·容器化部署
这是个栗子9 小时前
AI辅助编程工具(六) - CodeGeeX
人工智能·ai·codegeex
vortesnail9 小时前
超详细的云服务部署 OpenClaw 并接入飞书全流程,别再趟坑了
人工智能·程序员·openai
紫微AI9 小时前
Anthropic Claude Code 工程博客精读:构建可靠长时运行AI代理的有效框架实践
人工智能
量子-Alex9 小时前
【大模型思维链】自洽性提升语言模型中的思维链推理能力
人工智能·语言模型·自然语言处理