深度学习:循环神经网络的计算复杂度,顺序操作和最大路径长度

当更新循环神经网络的隐状态时,d × d权重矩阵和d维隐状态的乘法计算复杂度为O(d2)。由于序列长度为n,因此循环神经网络层的计算复杂度为O(nd2)。根据 图10.6.1,有O(n)个顺序操作无法并行化,最大路径长度也是O(n)。

循环神经网络的隐状态更新

在循环神经网络中,隐状态的更新公式通常为:

h(t)=σ(Wh(t−1)+Ux(t)+b)

其中:

h(t) 是时间步 t 的隐状态。

W是隐状态到隐状态的权重矩阵,大小为 d×d。

h(t−1)是时间步 t−1的隐状态,大小为 d。

U是输入到隐状态的权重矩阵,大小为 d×d。

x(t)是时间步 t的输入,大小为 d。

b是偏置向量,大小为 d。

σ是激活函数。

计算复杂度

  • 权重矩阵和隐状态的乘法:

    隐状态的更新涉及到 Wh(t−1)的乘法操作。假设 W 的大小为 d×d,h(t−1)的大小为 d,那么乘法的计算复杂度为 O(d2)。

  • 序列长度 n:

    对于长度为 n 的序列,隐状态的更新需要进行 n 次。每次更新都需要进行 Wh(t−1)的乘法操作,因此总的计算复杂度为 O(nd2)。

顺序操作和最大路径长度

  • 顺序操作:

    在循环神经网络中,隐状态的更新是按时间步顺序进行的。每个时间步的隐状态依赖于前一个时间步的隐状态,因此无法并行化。

    对于长度为 n 的序列,有 n个顺序操作无法并行化。

  • 最大路径长度:

    最大路径长度是指信息从输入层传递到输出层所需经过的最大时间步数。在循环神经网络中,信息需要按时间步顺序传递,因此最大路径长度为 O(n)。

相关推荐
梵得儿SHI2 分钟前
AI Agent 深度解析:高级架构、优化策略与行业实战指南(多智能体 + 分层决策 + 人类在环)
人工智能·多智能体系统·aiagent·分层决策系统·人类在环机制·agent系统完整解决方案·aiagent底层原理
哥布林学者14 分钟前
吴恩达深度学习课程三: 结构化机器学习项目 第二周:误差分析与学习方法(一)误差分析与快速迭代
深度学习·ai
Peter_Monster20 分钟前
大语言模型(LLM)架构核心解析(干货篇)
人工智能·语言模型·架构
Ma04071340 分钟前
【机器学习】监督学习、无监督学习、半监督学习、自监督学习、弱监督学习、强化学习
人工智能·学习·机器学习
cooldream200942 分钟前
LlamaIndex 存储体系深度解析
人工智能·rag·llamaindex
CoovallyAIHub1 小时前
如何在手机上轻松识别多种鸟类?我们发现了更简单的秘密……
深度学习·算法·计算机视觉
Elastic 中国社区官方博客1 小时前
使用 A2A 协议和 MCP 在 Elasticsearch 中创建一个 LLM agent 新闻室:第二部分
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
知识浅谈1 小时前
我用Gemini3pro 造了个手控全息太阳系
人工智能
孤廖1 小时前
终极薅羊毛指南:CLI工具免费调用MiniMax-M2/GLM-4.6/Kimi-K2-Thinking全流程
人工智能·经验分享·chatgpt·ai作画·云计算·无人机·文心一言
aneasystone本尊1 小时前
学习 LiteLLM 的日志系统
人工智能