深度学习:循环神经网络的计算复杂度,顺序操作和最大路径长度

当更新循环神经网络的隐状态时,d × d权重矩阵和d维隐状态的乘法计算复杂度为O(d2)。由于序列长度为n,因此循环神经网络层的计算复杂度为O(nd2)。根据 图10.6.1,有O(n)个顺序操作无法并行化,最大路径长度也是O(n)。

循环神经网络的隐状态更新

在循环神经网络中,隐状态的更新公式通常为:

h(t)=σ(Wh(t−1)+Ux(t)+b)

其中:

h(t) 是时间步 t 的隐状态。

W是隐状态到隐状态的权重矩阵,大小为 d×d。

h(t−1)是时间步 t−1的隐状态,大小为 d。

U是输入到隐状态的权重矩阵,大小为 d×d。

x(t)是时间步 t的输入,大小为 d。

b是偏置向量,大小为 d。

σ是激活函数。

计算复杂度

  • 权重矩阵和隐状态的乘法:

    隐状态的更新涉及到 Wh(t−1)的乘法操作。假设 W 的大小为 d×d,h(t−1)的大小为 d,那么乘法的计算复杂度为 O(d2)。

  • 序列长度 n:

    对于长度为 n 的序列,隐状态的更新需要进行 n 次。每次更新都需要进行 Wh(t−1)的乘法操作,因此总的计算复杂度为 O(nd2)。

顺序操作和最大路径长度

  • 顺序操作:

    在循环神经网络中,隐状态的更新是按时间步顺序进行的。每个时间步的隐状态依赖于前一个时间步的隐状态,因此无法并行化。

    对于长度为 n 的序列,有 n个顺序操作无法并行化。

  • 最大路径长度:

    最大路径长度是指信息从输入层传递到输出层所需经过的最大时间步数。在循环神经网络中,信息需要按时间步顺序传递,因此最大路径长度为 O(n)。

相关推荐
天天代码码天天7 分钟前
C# OpenCvSharp 部署表格检测
人工智能·目标检测·表格检测
姓学名生8 分钟前
李沐vscode配置+github管理+FFmpeg视频搬运+百度API添加翻译字幕
vscode·python·深度学习·ffmpeg·github·视频
斯多葛的信徒11 分钟前
看看你的电脑可以跑 AI 模型吗?
人工智能·语言模型·电脑·llama
正在走向自律12 分钟前
AI 写作(六):核心技术与多元应用(6/10)
人工智能·aigc·ai写作
AI科技大本营12 分钟前
Anthropic四大专家“会诊”:实现深度思考不一定需要多智能体,AI完美对齐比失控更可怕!...
人工智能·深度学习
Cc不爱吃洋葱12 分钟前
如何本地部署AI智能体平台,带你手搓一个AI Agent
人工智能·大语言模型·agent·ai大模型·ai agent·智能体·ai智能体
网安打工仔13 分钟前
斯坦福李飞飞最新巨著《AI Agent综述》
人工智能·自然语言处理·大模型·llm·agent·ai大模型·大模型入门
AGI学习社13 分钟前
2024中国排名前十AI大模型进展、应用案例与发展趋势
linux·服务器·人工智能·华为·llama
AI_Tool13 分钟前
纳米AI搜索官网 - 新一代智能答案引擎
人工智能·搜索引擎
Damon小智14 分钟前
合合信息DocFlow产品解析与体验:人人可搭建的AI自动化单据处理工作流
图像处理·人工智能·深度学习·机器学习·ai·自动化·docflow