深度学习:循环神经网络的计算复杂度,顺序操作和最大路径长度

当更新循环神经网络的隐状态时,d × d权重矩阵和d维隐状态的乘法计算复杂度为O(d2)。由于序列长度为n,因此循环神经网络层的计算复杂度为O(nd2)。根据 图10.6.1,有O(n)个顺序操作无法并行化,最大路径长度也是O(n)。

循环神经网络的隐状态更新

在循环神经网络中,隐状态的更新公式通常为:

h(t)=σ(Wh(t−1)+Ux(t)+b)

其中:

h(t) 是时间步 t 的隐状态。

W是隐状态到隐状态的权重矩阵,大小为 d×d。

h(t−1)是时间步 t−1的隐状态,大小为 d。

U是输入到隐状态的权重矩阵,大小为 d×d。

x(t)是时间步 t的输入,大小为 d。

b是偏置向量,大小为 d。

σ是激活函数。

计算复杂度

  • 权重矩阵和隐状态的乘法:

    隐状态的更新涉及到 Wh(t−1)的乘法操作。假设 W 的大小为 d×d,h(t−1)的大小为 d,那么乘法的计算复杂度为 O(d2)。

  • 序列长度 n:

    对于长度为 n 的序列,隐状态的更新需要进行 n 次。每次更新都需要进行 Wh(t−1)的乘法操作,因此总的计算复杂度为 O(nd2)。

顺序操作和最大路径长度

  • 顺序操作:

    在循环神经网络中,隐状态的更新是按时间步顺序进行的。每个时间步的隐状态依赖于前一个时间步的隐状态,因此无法并行化。

    对于长度为 n 的序列,有 n个顺序操作无法并行化。

  • 最大路径长度:

    最大路径长度是指信息从输入层传递到输出层所需经过的最大时间步数。在循环神经网络中,信息需要按时间步顺序传递,因此最大路径长度为 O(n)。

相关推荐
大千AI助手2 小时前
代价复杂度剪枝(CCP)详解:原理、实现与应用
人工智能·决策树·机器学习·剪枝·大千ai助手·代价复杂度剪枝·ccp
zl_vslam3 小时前
SLAM中的非线性优-3D图优化之李群李代数在Opencv-PNP中的应用(四)
人工智能·opencv·算法·计算机视觉
whaosoft-1433 小时前
51c视觉~3D~合集8
人工智能
澳鹏Appen5 小时前
数据集月度精选 | 高质量具身智能数据集:打开机器人“感知-决策-动作”闭环的钥匙
人工智能·机器人·具身智能
q***71017 小时前
开源模型应用落地-工具使用篇-Spring AI-Function Call(八)
人工智能·spring·开源
极限实验室7 小时前
Coco AI 参选 Gitee 2025 最受欢迎开源软件!您的每一票,都是对中国开源的硬核支持
人工智能·开源
secondyoung7 小时前
Mermaid流程图高效转换为图片方案
c语言·人工智能·windows·vscode·python·docker·流程图
iFlow_AI7 小时前
iFlow CLI Hooks 「从入门到实战」应用指南
开发语言·前端·javascript·人工智能·ai·iflow·iflow cli
Shang180989357267 小时前
THC63LVD1027D一款10位双链路LVDS信号中继器芯片,支持WUXGA分辨率视频数据传输THC63LVD1027支持30位数据通道方案
人工智能·考研·信息与通信·信号处理·thc63lvd1027d·thc63lvd1027
飞哥数智坊8 小时前
项目太大,AI无法理解?试试这3种思路
人工智能·ai编程