AB矩阵秩1乘法,列乘以行

1. AB矩阵相乘

2. 代码测试

  • python 代码
python 复制代码
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# @FileName  :ABTest.py
# @Time      :2024/11/17 8:37
# @Author    :Jason Zhang
import numpy as np
from abc import ABCMeta, abstractmethod

np.set_printoptions(suppress=True, precision=3)
np.random.seed(1213)


class ABMultipy(metaclass=ABCMeta):
    @abstractmethod
    def execute(self, in_a, in_b):
        pass

    @abstractmethod
    def result(self):
        pass


class DoProduct(ABMultipy):
    def __init__(self, in_a, in_b):
        self.in_a = in_a
        self.in_b = in_b

    def execute(self, in_a, in_b):
        my_result = in_a @ in_b
        return my_result

    def result(self):
        get_result = self.execute(self.in_a, self.in_b)
        #   print(f"result=\n{get_result}")
        return get_result


class ColumnRowProduct(ABMultipy):
    def __init__(self, in_a, in_b):
        self.in_a = in_a
        self.in_b = in_b

    def execute(self, in_a, in_b):
        a_r, a_c = np.shape(self.in_a)
        b_r, b_c = np.shape(self.in_b)
        result1 = np.zeros((a_r, b_c))
        if a_c == b_r:
            for i in range(a_c):
                result1 += np.outer(self.in_a[:, i], self.in_b[i, :])
        return result1

    def result(self):
        get_result1 = self.execute(self.in_a, self.in_b)
        #   print(f"result=\n{get_result1}")
        return get_result1


class CheckResult(object):
    def __init__(self):
        self.step = 5
        self.shape_abc = np.random.choice(20, (3, self.step), replace=False)

    def execute(self):
        # print(self.shape_abc)
        for i in range(self.step):
            a_row, a_column, b_column = self.shape_abc[:, i]
            b_row = a_column
            matrix_a = np.random.randint(1, 20, (a_row, a_column))
            matrix_b = np.random.randint(1, 20, (b_row, b_column))
            #  print(f"*" * 50)
            #  print(f"a_row={a_row}")
            #  print(f"a_column={a_column}")
            #  print(f"b_column={b_column}")
            #  print(f"*" * 50)
            my_strategy_do_product = DoProduct(matrix_a, matrix_b)
            result1 = my_strategy_do_product.result()
            my_strategy_column = ColumnRowProduct(matrix_a, matrix_b)
            result2 = my_strategy_column.result()
            check_result = np.allclose(result1, result2)
            print(f"*" * 50)
            print(f"matrix_a=\n{matrix_a}")
            print(f"matrix_b=\n{matrix_b}")
            #    print(f"result1=\n{result1}")
            #    print(f"result2=\n{result2}")
            print(f"result1 is {check_result} same with result2")


if __name__ == "__main__":
    run_code = 0
    my_test = CheckResult()
    my_test.execute()
  • 运行结果:
python 复制代码
**************************************************
matrix_a=
[[15 15 14 13 19 10 12  2 11 11  4  9]
 [13 10 19  3 18 13  7 11  8 13  7  7]
 [13  2 18 17  2 14 16 11  6 18  2 12]
 [ 5 18 18  8 12 14 14  7  9  9 15  7]
 [18  5 12  7 11  4  6  2 18  8 12  3]
 [ 6  7 13 11  1  6 18 18 17  9 13  7]
 [19  3 13  1 11 17 14  5  9 16 18 16]
 [12 18 14 16  8  8 10 15 18 11  1 13]
 [10  7 12  3  1  6  2 11  9  9 19  4]
 [18 19 16 15 13  9  1  5 10  6 14  1]
 [15 17 16  2  5  1 18 15 13 16  2 16]
 [11  8 18 14  7 12 11 12 17 12 16 19]
 [ 4 13  3  1  1  4 15 12 13 11  1 17]
 [12 18  5  4 10  2  8 18 10 16 12  6]
 [ 3  2 19  3  7 17  8  3 11 17 14 10]
 [ 6 18 18 11 12  7  9  9 14  8  2  1]
 [10  2  6  5  1  6 10 15  6  7 16 15]
 [ 7 14  5  8  4 10  5 11  7 15 15 19]
 [18  7 19 10 13 13  2  7  5 12 13 17]]
matrix_b=
[[ 7 14 14 13  2  5]
 [16  2 18 19 15 10]
 [13 13  5  8 14 19]
 [19  1  7  3  4  9]
 [16  2  3  5 13  6]
 [ 7  7  1  2 19 10]
 [ 7  9  6  8 17  5]
 [17  4  5  7 10  9]
 [ 1 13 16 11  8  6]
 [19 18 16  1  3 18]
 [16 16 19 11 17 11]
 [10  4 16 17 13  7]]
result1 is True same with result2
**************************************************
matrix_a=
[[19 15  5  3  8  4 10  3 14  6 11  3  4]
 [16  3  6  1 17  8 10  4  3 17  8  9  7]
 [ 1  5 17 13  8 18 11 15  7 14 12 17 12]
 [18  5  1  6 13 17 18  9  1 12 18  1  1]
 [12  9 18 16  2  8  3 13  2  2  1 13  4]
 [19  5  8 19 15 19 15  4 16 16 12  6 19]
 [ 2  1 14  3  7 14  4 17  7 12  8 16  8]
 [ 2 18 14 18 11 10 17 19 10  3 13  3 14]
 [13 17 17 12  8  9  1  7 13  8 19 14  4]
 [ 7  8 11 17 11  5 15  6 19 12 18  4  9]
 [ 7  9  4 11 18  2 16  5 10 18  2 10 14]
 [14  2 18 15 13 12 13 15 11 19  8  1  6]
 [15  9  2 11  7 10  5  2  9 16  2 19 18]
 [18  4  4  9  5 10 19 17  8  7 13  2  6]
 [11  9 16 13 11 11  4  5 16  1 12 10 12]
 [17  3  8 13 18  3 15 12  3  5 11 16 15]
 [ 4  6  2 17  4 16 19 10 13 15 17 13 19]]
matrix_b=
[[ 8  8 13  9  8  4  4  9 15 17 10  2 19 14]
 [ 1  2  2  5 13  8 16 10  7  2 19 18 15 16]
 [15 13  2 18  2 12  5 19 17  2 11 10  8 16]
 [ 3  4 11  5 16 19  2  2 18 12 11 12 12 11]
 [18 16 15 15  3 11  1 12 10  1 16  6  8 19]
 [10  2 12  2  6 16  4  5  7  6  7 16 12 19]
 [10 10 15  4 15 17 11 18  8  9 14  7  1 11]
 [ 3  8  8 18  9 10 17  2  8 17 11  5  3  1]
 [15 17 19  4  5  6  4 17  6  6 14  7 11  8]
 [ 3 19  2 17  5  7 15  7 14 12  6 19  7  6]
 [19 16  3 17  3  2 13 16 11  5 19 17 17 12]
 [ 9 19  8  6  6  9  9  4  1 13  8 15 19  5]
 [12  9  9  8  7 16 10  1 16  8 19 18  9 18]]
result1 is True same with result2
**************************************************
matrix_a=
[[18 10 13 16 12 16  1 19  4 18  6 13 18 19  6  6 16 11]
 [15 10 13 15 18  8 13 13 15  5 15 11 11 13  7 17  2 14]]
matrix_b=
[]
result1 is True same with result2
**************************************************
matrix_a=
[[14 16  4 16  6 14  7  5  5]
 [18  5 13  4 12 16 10  7  9]
 [ 6 16  2  3 14 12  8 11 18]
 [ 7  5 13  5 12  7 15  8  2]
 [10 17  3  4 16 17  9  5 17]
 [10  6 15 16  2 11 11  8  3]
 [ 8 15  8 17 11  9  4  7  2]]
matrix_b=
[[10  8  8  4  4  5 11 11]
 [ 1 17  4 10 16 10 19 11]
 [19 10 14  4  3 16 19  7]
 [11 16  8  1 13 13 10 12]
 [ 6 12 11 15 16 12  2  5]
 [ 6  6 15  7  8 14 10  6]
 [ 5 17 12  4  7 17  3 10]
 [ 4  2 11 13  3 13 16 18]
 [ 7  3 16 17 11  6 15 18]]
result1 is True same with result2
**************************************************
matrix_a=
[[16  9 16]]
matrix_b=
[[ 4 14 11  5]
 [ 9  7 16  7]
 [ 4 11  9 19]]
result1 is True same with result2
相关推荐
别NULL36 分钟前
机试题——最小矩阵宽度
c++·算法·矩阵
林涧泣38 分钟前
图的矩阵表示
学习·线性代数·矩阵
gentle_ice41 分钟前
leetcode——矩阵置零(java)
java·算法·leetcode·矩阵
查理零世43 分钟前
保姆级讲解 python之zip()方法实现矩阵行列转置
python·算法·矩阵
刀客1231 小时前
python3+TensorFlow 2.x(四)反向传播
人工智能·python·tensorflow
liruiqiang051 小时前
机器学习 - 初学者需要弄懂的一些线性代数的概念
人工智能·线性代数·机器学习·线性回归
sysu632 小时前
95.不同的二叉搜索树Ⅱ python
开发语言·数据结构·python·算法·leetcode·面试·深度优先
SsummerC2 小时前
【leetcode100】从前序与中序遍历序列构造二叉树
python·算法·leetcode
陌北v13 小时前
PyTorch广告点击率预测(CTR)利用深度学习提升广告效果
人工智能·pytorch·python·深度学习·ctr
Мартин.3 小时前
[Meachines] [Easy] Bashed PHP Bash+Python计划任务权限提升
python·php·bash