OpenCV笔记:图像去噪对比

图像去噪对比

1. 均值滤波(Mean Filtering)

  • 方法:用像素周围的像素平均值替换每个像素值。
  • 适用场景:适用于去除随机噪声,如在不强调图像细节的场景中,如果图像细节较多时,可能会导致图像模糊。
  • 局限性: 容易引起图像模糊,导致边缘和细节的丢失。

2. 中值滤波(Median Filtering)

  • 方法:用像素周围的中值替换每个像素值。
  • 适用场景:特别有效于去除椒盐噪声(随机出现的黑白点,如扫描或拍照过程中产生的点状噪声),同时能够较好地保持图像边缘。
  • 局限性: 在处理大面积噪声时效果不佳,可能导致图像边缘的模糊。

3. 高斯滤波(Gaussian Filtering)

  • 方法:使用高斯函数作为权重,计算像素及其邻域的加权平均值。
  • 适用场景:适用于去除高斯噪声,对图像进行平滑处理。在保留边缘信息方面比均值滤波更好,常用于摄影图像的预处理。
  • 局限性: 仍然会导致一定程度的模糊,尤其是在边缘处。

3.1 高斯噪声

  • 特点
    • 通常表现为每个像素点的灰度值随机偏离其真实值,而这种偏离的概率分布符合高斯分布。
    • 与椒盐噪声不同,高斯噪声影响图像中的每个像素,而不是特定位置的像素。
  • 原因
    • 电子元件:如传感器读出噪声、放大器噪声等,这些通常是由于电子元器件的物理限制造成的。
    • 环境因素:如热噪声,也称为Johnson-Nyquist噪声,通常由电子设备的温度引起。

4. 双边滤波(Bilateral Filtering)

  • 方法:同时考虑空间邻近度和像素值相似度,保边缘的滤波方法。结合空间邻域和像素值的相似性进行加权平均,能够在去噪的同时保留边缘信息。
  • 适用场景:在去噪的同时保持边缘信息,适用于细节丰富的图像。适用于图像增强和保边去噪,特别是在需要保留边缘和细节的场景,如医学图像处理或高清照片处理。
  • 局限性: 计算复杂度较高,处理速度相对较慢。

5. 非局部均值滤波(Non-Local Means, NLM)

  • 方法简介: 利用图像中重复的纹理和模式,通过搜索整个图像来找到相似的像素块并进行加权平均。
  • 适用场景: 特别适用于去除具有纹理的图像中的噪声,可以很好地保持图像的结构。如自然图像的去噪,在图像有重复纹理或结构时效果尤佳。
  • 局限性: 计算复杂度高,处理时间较长。

6. 总变分去噪(Total Variation Denoising, TV)

  • 方法简介: 通过最小化图像的总变分来减少噪声,同时保留图像的边缘。
  • 适用场景: 适用于高斯噪声去除,在保留边缘信息的同时,减少了图像模糊。广泛应用于图像复原领域。
  • 局限性: 可能会在平坦区域产生阶梯效应。

7. 小波去噪(Wavelet Denoising)

  • 方法简介: 将图像分解为不同尺度和方向的子带,然后对子带系数进行处理。
  • 适用场景: 适用于多尺度噪声去除,去除具有不同频率特性的噪声,特别适用于保持图像细节和边缘。如医学图像、卫星图像中的噪声处理。
  • 局限性: 阈值选择不当可能导致细节损失或噪声去除不完全。

8. 滤波器组去噪(Filter Bank Denoising)

  • 方法:使用一组滤波器分别处理图像的不同部分。
  • 适用场景:适用于具有不同噪声特性的多通道图像。
相关推荐
一 铭30 分钟前
AI领域新趋势:从提示(Prompt)工程到上下文(Context)工程
人工智能·语言模型·大模型·llm·prompt
顾道长生'2 小时前
(Arxiv-2025)通过动态 token 剔除实现无需训练的高效视频生成
计算机视觉·音视频·视频生成
麻雀无能为力4 小时前
CAU数据挖掘实验 表分析数据插件
人工智能·数据挖掘·中国农业大学
时序之心4 小时前
时空数据挖掘五大革新方向详解篇!
人工智能·数据挖掘·论文·时间序列
IMPYLH5 小时前
Python 的内置函数 reversed
笔记·python
.30-06Springfield5 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
说私域6 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的超级文化符号构建路径研究
人工智能·小程序·开源
永洪科技6 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi
shangyingying_16 小时前
关于小波降噪、小波增强、小波去雾的原理区分
人工智能·深度学习·计算机视觉
书玮嘎7 小时前
【WIP】【VLA&VLM——InternVL系列】
人工智能·深度学习