OpenCV笔记:图像去噪对比

图像去噪对比

1. 均值滤波(Mean Filtering)

  • 方法:用像素周围的像素平均值替换每个像素值。
  • 适用场景:适用于去除随机噪声,如在不强调图像细节的场景中,如果图像细节较多时,可能会导致图像模糊。
  • 局限性: 容易引起图像模糊,导致边缘和细节的丢失。

2. 中值滤波(Median Filtering)

  • 方法:用像素周围的中值替换每个像素值。
  • 适用场景:特别有效于去除椒盐噪声(随机出现的黑白点,如扫描或拍照过程中产生的点状噪声),同时能够较好地保持图像边缘。
  • 局限性: 在处理大面积噪声时效果不佳,可能导致图像边缘的模糊。

3. 高斯滤波(Gaussian Filtering)

  • 方法:使用高斯函数作为权重,计算像素及其邻域的加权平均值。
  • 适用场景:适用于去除高斯噪声,对图像进行平滑处理。在保留边缘信息方面比均值滤波更好,常用于摄影图像的预处理。
  • 局限性: 仍然会导致一定程度的模糊,尤其是在边缘处。

3.1 高斯噪声

  • 特点
    • 通常表现为每个像素点的灰度值随机偏离其真实值,而这种偏离的概率分布符合高斯分布。
    • 与椒盐噪声不同,高斯噪声影响图像中的每个像素,而不是特定位置的像素。
  • 原因
    • 电子元件:如传感器读出噪声、放大器噪声等,这些通常是由于电子元器件的物理限制造成的。
    • 环境因素:如热噪声,也称为Johnson-Nyquist噪声,通常由电子设备的温度引起。

4. 双边滤波(Bilateral Filtering)

  • 方法:同时考虑空间邻近度和像素值相似度,保边缘的滤波方法。结合空间邻域和像素值的相似性进行加权平均,能够在去噪的同时保留边缘信息。
  • 适用场景:在去噪的同时保持边缘信息,适用于细节丰富的图像。适用于图像增强和保边去噪,特别是在需要保留边缘和细节的场景,如医学图像处理或高清照片处理。
  • 局限性: 计算复杂度较高,处理速度相对较慢。

5. 非局部均值滤波(Non-Local Means, NLM)

  • 方法简介: 利用图像中重复的纹理和模式,通过搜索整个图像来找到相似的像素块并进行加权平均。
  • 适用场景: 特别适用于去除具有纹理的图像中的噪声,可以很好地保持图像的结构。如自然图像的去噪,在图像有重复纹理或结构时效果尤佳。
  • 局限性: 计算复杂度高,处理时间较长。

6. 总变分去噪(Total Variation Denoising, TV)

  • 方法简介: 通过最小化图像的总变分来减少噪声,同时保留图像的边缘。
  • 适用场景: 适用于高斯噪声去除,在保留边缘信息的同时,减少了图像模糊。广泛应用于图像复原领域。
  • 局限性: 可能会在平坦区域产生阶梯效应。

7. 小波去噪(Wavelet Denoising)

  • 方法简介: 将图像分解为不同尺度和方向的子带,然后对子带系数进行处理。
  • 适用场景: 适用于多尺度噪声去除,去除具有不同频率特性的噪声,特别适用于保持图像细节和边缘。如医学图像、卫星图像中的噪声处理。
  • 局限性: 阈值选择不当可能导致细节损失或噪声去除不完全。

8. 滤波器组去噪(Filter Bank Denoising)

  • 方法:使用一组滤波器分别处理图像的不同部分。
  • 适用场景:适用于具有不同噪声特性的多通道图像。
相关推荐
Hcoco_me3 分钟前
大模型面试题23:对比学习原理-从通俗理解到核心逻辑(通用AI视角)
人工智能·rnn·深度学习·学习·自然语言处理·word2vec
Java后端的Ai之路3 分钟前
【神经网络基础】-神经网络优化方法全解析
人工智能·深度学习·神经网络·机器学习
高洁015 分钟前
深度学习—卷积神经网络(2)
人工智能·深度学习·机器学习·transformer·知识图谱
一招定胜负7 分钟前
项目案例:卷积神经网络实现食物图片分类代码详细解析
人工智能·分类·cnn
景联文科技7 分钟前
景联文 × 麦迪:归一医疗数据枢纽,构建AI医疗新底座
大数据·人工智能·数据标注
wyg_03111310 分钟前
机器问道:大模型RAG 解读凡人修仙传
人工智能·python·transformer
未来之窗软件服务10 分钟前
幽冥大陆(七十九)Python 水果识别训练视频识别 —东方仙盟练气期
开发语言·人工智能·python·水果识别·仙盟创梦ide·东方仙盟
光影少年28 分钟前
AI前端开发需要会哪些及未来发展?
前端·人工智能·前端框架
hqyjzsb32 分钟前
2026年AI证书选择攻略:当“平台绑定”与“能力通用”冲突,如何破局?
大数据·c语言·人工智能·信息可视化·职场和发展·excel·学习方法
独自归家的兔33 分钟前
基于 cosyvoice-v3-plus 的简单语音合成
人工智能·后端·语音复刻