6、PyTorch中搭建分类网络实例

1. 重要类

  • nn.Module
  • nn.flatten
  • nn.linear
  • nn.relu
  • to.device
  • torch.cuda.is_available
  • nn.softmax
  • nn.argmax
  • nn.sequential
  • nn.conv2d
  • add_module
  • buffer
  • load_state_dict
  • named_parameters
  • requires_grad
  • save_check_points

2. 代码测试

python 复制代码
import torch
from torch import nn
from torch.nn import Module

torch.set_printoptions(precision=3)


class MyModelTest(Module):
    def __init__(self):
        super(MyModelTest, self).__init__()
        self.linear_1 = nn.Linear(3, 4)
        self.relu = nn.ReLU()
        self.linear_2 = nn.Linear(4, 5)

    def forward(self, x):
        x = self.linear_1(x)
        x = self.relu(x)
        y = self.linear_2(x)
        return y


if __name__ == "__main__":
    matrix = torch.arange(3,dtype=torch.float)
    my_softmax = nn.Softmax(dim=0)
    output = my_softmax(matrix)
    print(f"matrix=\n{matrix}")
    print(f"output=\n{output}")
    my_model = MyModelTest()
    for name, param in my_model.named_parameters():
        print(f"layer:{name}\n|size:{param.size()}\n|values:{param[:2]}\n")
  • 结果:
python 复制代码
matrix=
tensor([0., 1., 2.])
output=
tensor([0.090, 0.245, 0.665])
layer:linear_1.weight
|size:torch.Size([4, 3])
|values:tensor([[-0.544, -0.492,  0.190],
        [-0.424, -0.068,  0.134]], grad_fn=<SliceBackward0>)

layer:linear_1.bias
|size:torch.Size([4])
|values:tensor([0.295, 0.306], grad_fn=<SliceBackward0>)

layer:linear_2.weight
|size:torch.Size([5, 4])
|values:tensor([[ 0.489,  0.018,  0.314,  0.497],
        [ 0.364, -0.455,  0.047, -0.215]], grad_fn=<SliceBackward0>)

layer:linear_2.bias
|size:torch.Size([5])
|values:tensor([-0.027,  0.190], grad_fn=<SliceBackward0>)
相关推荐
中杯可乐多加冰5 分钟前
逻辑控制案例详解|基于smardaten实现OA一体化办公系统逻辑交互
人工智能·深度学习·低代码·oa办公·无代码·一体化平台·逻辑控制
IT_陈寒30 分钟前
Redis实战:5个高频应用场景下的性能优化技巧,让你的QPS提升50%
前端·人工智能·后端
龙智DevSecOps解决方案41 分钟前
Perforce《2025游戏技术现状报告》Part 1:游戏引擎技术的广泛影响以及生成式AI的成熟之路
人工智能·unity·游戏引擎·游戏开发·perforce
大佬,救命!!!44 分钟前
更换适配python版本直接进行机器学习深度学习等相关环境配置(非仿真环境)
人工智能·python·深度学习·机器学习·学习笔记·详细配置
星空的资源小屋1 小时前
VNote:程序员必备Markdown笔记神器
javascript·人工智能·笔记·django
梵得儿SHI1 小时前
(第七篇)Spring AI 基础入门总结:四层技术栈全景图 + 三大坑根治方案 + RAG 进阶预告
java·人工智能·spring·springai的四大核心能力·向量维度·prompt模板化·向量存储检索
亚马逊云开发者1 小时前
Amazon Bedrock助力飞书深诺电商广告分类
人工智能
2301_823438021 小时前
解析论文《复杂海上救援环境中无人机群的双阶段协作路径规划与任务分配》
人工智能·算法·无人机
无心水1 小时前
【Python实战进阶】4、Python字典与集合深度解析
开发语言·人工智能·python·python字典·python集合·python实战进阶·python工业化实战进阶
励志成为糕手2 小时前
循环神经网络(RNN):时序数据的深度学习模型
人工智能·rnn·深度学习·gru·lstm