# 1.导入依赖包
import torch
import torch.nn as nn
from torchvision.datasets import CIFAR10
from torchvision.transforms import ToTensor
from torchvision.transforms import Compose
import torch.optim as optim
from torch.utils.data import DataLoader
import time
import matplotlib.pyplot as plt
from torchsummary import summary
BATCH_SIZE = 8
# 2. 获取数据集
def create_dataset():
# 加载数据集:训练集数据和测试数据
train = CIFAR10(root='data', train=True, transform=Compose([ToTensor()]))
valid = CIFAR10(root='data', train=False, transform=Compose([ToTensor()]))
# 返回数据集结果
return train, valid
# if __name__ == '__main__':
# # 数据集加载
# train_dataset, valid_dataset = create_dataset()
# # 数据集类别
# print("数据集类别:", train_dataset.class_to_idx)
# # 数据集中的图像数据
# print("训练集数据集:", train_dataset.data.shape)
# print("测试集数据集:", valid_dataset.data.shape)
# # 图像展示
# plt.figure(figsize=(2, 2))
# plt.imshow(train_dataset.data[1])
# plt.title(train_dataset.targets[1])
# plt.show()
# 3.模型构建
class ImageClassification(nn.Module):
# 定义网络结构
def __init__(self):
super(ImageClassification, self).__init__()
# 定义网络层:卷积层+池化层
self.conv1 = nn.Conv2d(3, 6, stride=1, kernel_size=3)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(6, 16, stride=1, kernel_size=3)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
# 全连接层
self.linear1 = nn.Linear(576, 120)
self.linear2 = nn.Linear(120, 84)
self.out = nn.Linear(84, 10)
# 定义前向传播
def forward(self, x):
# 卷积+relu+池化
x = torch.relu(self.conv1(x))
x = self.pool1(x)
# 卷积+relu+池化
x = torch.relu(self.conv2(x))
x = self.pool2(x)
# 将特征图做成以为向量的形式:相当于特征向量
x = x.reshape(x.size(0), -1)
# 全连接层
x = torch.relu(self.linear1(x))
x = torch.relu(self.linear2(x))
# 返回输出结果
return self.out(x)
# if __name__ == '__main__':
# # 模型实例化
# model = ImageClassification()
# summary(model, input_size=(3, 32, 32), batch_size=1)
# 4.训练函数编写
def train(model, train_dataset):
criterion = nn.CrossEntropyLoss() # 构建损失函数
optimizer = optim.Adam(model.parameters(), lr=1e-3) # 构建优化方法
epoch = 20 # 训练轮数
for epoch_idx in range(epoch):
# 构建数据加载器
dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
sam_num = 0 # 样本数量
total_loss = 0.0 # 损失总和
start = time.time() # 开始时间
# 遍历数据进行网络训练
for x, y in dataloader:
output = model(x)
loss = criterion(output, y) # 计算损失
optimizer.zero_grad() # 梯度清零
loss.backward() # 反向传播
optimizer.step() # 参数更新
total_loss += loss.item() # 统计损失和
sam_num += 1
print('epoch:%2s loss:%.5f time:%.2fs' % (epoch_idx + 1, total_loss / sam_num, time.time() - start))
# 模型保存
torch.save(model.state_dict(), 'data/image_classification.pth')
def test(valid_dataset):
# 构建数据加载器
dataloader = DataLoader(valid_dataset, batch_size=BATCH_SIZE, shuffle=True)
# 加载模型并加载训练好的权重
model = ImageClassification()
model.load_state_dict(torch.load('data/image_classification.pth'))
model.eval()
# 计算精度
total_correct = 0
total_samples = 0
# 遍历每个batch的数据,获取预测结果,计算精度
for x, y in dataloader:
output = model(x)
total_correct += (torch.argmax(output, dim=-1) == y).sum()
total_samples += len(y)
# 打印精度
print('Acc: %.2f' % (total_correct / total_samples))
if __name__ == '__main__':
# 数据集加载
train_dataset, valid_dataset = create_dataset()
# 模型实例化
model = ImageClassification()
# 模型训练
# train(model, train_dataset)
# 模型预测
test(valid_dataset)
卷积神经网络实现图像分类
weixin_431470862024-11-26 8:28
相关推荐
码字的字节8 小时前
深度学习损失函数的设计哲学:从交叉熵到Huber损失的深入探索凪卄12138 小时前
图像预处理 二碳酸的唐8 小时前
Inception网络架构:深度学习视觉模型的里程碑AI赋能8 小时前
自动驾驶训练-tub详解seasonsyy8 小时前
1.安装anaconda详细步骤(含安装截图)deephub8 小时前
AI代理性能提升实战:LangChain+LangGraph内存管理与上下文优化完整指南go54631584659 小时前
基于深度学习的食管癌右喉返神经旁淋巴结预测系统研究Blossom.1189 小时前
基于深度学习的图像分类:使用Capsule Networks实现高效分类宇称不守恒4.09 小时前
2025暑期—05神经网络-卷积神经网络格林威10 小时前
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现沙滩小人检测识别(C#代码UI界面版)