卷积神经网络实现图像分类

复制代码
# 1.导入依赖包
import torch
import torch.nn as nn
from torchvision.datasets import CIFAR10
from torchvision.transforms import ToTensor
from torchvision.transforms import Compose
import torch.optim as optim
from torch.utils.data import DataLoader
import time
import matplotlib.pyplot as plt
from torchsummary import summary

BATCH_SIZE = 8


# 2. 获取数据集
def create_dataset():
    # 加载数据集:训练集数据和测试数据
    train = CIFAR10(root='data', train=True, transform=Compose([ToTensor()]))
    valid = CIFAR10(root='data', train=False, transform=Compose([ToTensor()]))
    # 返回数据集结果
    return train, valid


# if __name__ == '__main__':
#     # 数据集加载
#     train_dataset, valid_dataset = create_dataset()
#     # 数据集类别
#     print("数据集类别:", train_dataset.class_to_idx)
#     # 数据集中的图像数据
#     print("训练集数据集:", train_dataset.data.shape)
#     print("测试集数据集:", valid_dataset.data.shape)
#     # 图像展示
#     plt.figure(figsize=(2, 2))
#     plt.imshow(train_dataset.data[1])
#     plt.title(train_dataset.targets[1])
#     plt.show()


# 3.模型构建
class ImageClassification(nn.Module):
    # 定义网络结构
    def __init__(self):
        super(ImageClassification, self).__init__()
        # 定义网络层:卷积层+池化层
        self.conv1 = nn.Conv2d(3, 6, stride=1, kernel_size=3)
        self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
        self.conv2 = nn.Conv2d(6, 16, stride=1, kernel_size=3)
        self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
        # 全连接层
        self.linear1 = nn.Linear(576, 120)
        self.linear2 = nn.Linear(120, 84)
        self.out = nn.Linear(84, 10)

    # 定义前向传播
    def forward(self, x):
        # 卷积+relu+池化
        x = torch.relu(self.conv1(x))
        x = self.pool1(x)
        # 卷积+relu+池化
        x = torch.relu(self.conv2(x))
        x = self.pool2(x)
        # 将特征图做成以为向量的形式:相当于特征向量
        x = x.reshape(x.size(0), -1)
        # 全连接层
        x = torch.relu(self.linear1(x))
        x = torch.relu(self.linear2(x))
        # 返回输出结果
        return self.out(x)


# if __name__ == '__main__':
#     # 模型实例化
#     model = ImageClassification()
#     summary(model, input_size=(3, 32, 32), batch_size=1)

# 4.训练函数编写
def train(model, train_dataset):
    criterion = nn.CrossEntropyLoss()  # 构建损失函数
    optimizer = optim.Adam(model.parameters(), lr=1e-3)  # 构建优化方法
    epoch = 20  # 训练轮数
    for epoch_idx in range(epoch):
        # 构建数据加载器
        dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
        sam_num = 0  # 样本数量
        total_loss = 0.0  # 损失总和
        start = time.time()  # 开始时间
        # 遍历数据进行网络训练
        for x, y in dataloader:
            output = model(x)
            loss = criterion(output, y)  # 计算损失
            optimizer.zero_grad()  # 梯度清零
            loss.backward()  # 反向传播
            optimizer.step()  # 参数更新
            total_loss += loss.item()  # 统计损失和
            sam_num += 1
        print('epoch:%2s loss:%.5f time:%.2fs' % (epoch_idx + 1, total_loss / sam_num, time.time() - start))
    # 模型保存
    torch.save(model.state_dict(), 'data/image_classification.pth')




def test(valid_dataset):
    # 构建数据加载器
    dataloader = DataLoader(valid_dataset, batch_size=BATCH_SIZE, shuffle=True)
    # 加载模型并加载训练好的权重
    model = ImageClassification()
    model.load_state_dict(torch.load('data/image_classification.pth'))
    model.eval()
    # 计算精度
    total_correct = 0
    total_samples = 0
    # 遍历每个batch的数据,获取预测结果,计算精度
    for x, y in dataloader:
        output = model(x)
        total_correct += (torch.argmax(output, dim=-1) == y).sum()
        total_samples += len(y)
        # 打印精度
    print('Acc: %.2f' % (total_correct / total_samples))


if __name__ == '__main__':
    # 数据集加载
    train_dataset, valid_dataset = create_dataset()
    # 模型实例化
    model = ImageClassification()
    # 模型训练
    # train(model, train_dataset)
    # 模型预测
    test(valid_dataset)
相关推荐
CNRio13 小时前
人工智能基础架构与算力之3 Transformer 架构深度解析:从注意力机制到算力适配演进
人工智能·深度学习·transformer
qy-ll13 小时前
深度学习——CNN入门
人工智能·深度学习·cnn
青瓷程序设计17 小时前
动物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
F_D_Z17 小时前
数据集相关类代码回顾理解 | sns.distplot\%matplotlib inline\sns.scatterplot
python·深度学习·matplotlib
阿龙AI日记18 小时前
详解Transformer04:Decoder的结构
人工智能·深度学习·自然语言处理
xier_ran1 天前
深度学习:生成对抗网络(GAN)详解
人工智能·深度学习·机器学习·gan
海边夕阳20061 天前
【每天一个AI小知识】:什么是循环神经网络?
人工智能·经验分享·rnn·深度学习·神经网络·机器学习
【建模先锋】1 天前
论文复现!基于SAM-BiGRU网络的锂电池RUL预测
深度学习·论文复现·锂电池寿命预测·锂电池数据集·寿命预测
清云逸仙1 天前
AI Prompt 工程最佳实践:打造结构化的Prompt
人工智能·经验分享·深度学习·ai·ai编程
hacker7071 天前
openGauss 在K12教育场景的数据处理测评:CASE WHEN 实现高效分类
人工智能·分类·数据挖掘