卷积神经网络实现图像分类

复制代码
# 1.导入依赖包
import torch
import torch.nn as nn
from torchvision.datasets import CIFAR10
from torchvision.transforms import ToTensor
from torchvision.transforms import Compose
import torch.optim as optim
from torch.utils.data import DataLoader
import time
import matplotlib.pyplot as plt
from torchsummary import summary

BATCH_SIZE = 8


# 2. 获取数据集
def create_dataset():
    # 加载数据集:训练集数据和测试数据
    train = CIFAR10(root='data', train=True, transform=Compose([ToTensor()]))
    valid = CIFAR10(root='data', train=False, transform=Compose([ToTensor()]))
    # 返回数据集结果
    return train, valid


# if __name__ == '__main__':
#     # 数据集加载
#     train_dataset, valid_dataset = create_dataset()
#     # 数据集类别
#     print("数据集类别:", train_dataset.class_to_idx)
#     # 数据集中的图像数据
#     print("训练集数据集:", train_dataset.data.shape)
#     print("测试集数据集:", valid_dataset.data.shape)
#     # 图像展示
#     plt.figure(figsize=(2, 2))
#     plt.imshow(train_dataset.data[1])
#     plt.title(train_dataset.targets[1])
#     plt.show()


# 3.模型构建
class ImageClassification(nn.Module):
    # 定义网络结构
    def __init__(self):
        super(ImageClassification, self).__init__()
        # 定义网络层:卷积层+池化层
        self.conv1 = nn.Conv2d(3, 6, stride=1, kernel_size=3)
        self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
        self.conv2 = nn.Conv2d(6, 16, stride=1, kernel_size=3)
        self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
        # 全连接层
        self.linear1 = nn.Linear(576, 120)
        self.linear2 = nn.Linear(120, 84)
        self.out = nn.Linear(84, 10)

    # 定义前向传播
    def forward(self, x):
        # 卷积+relu+池化
        x = torch.relu(self.conv1(x))
        x = self.pool1(x)
        # 卷积+relu+池化
        x = torch.relu(self.conv2(x))
        x = self.pool2(x)
        # 将特征图做成以为向量的形式:相当于特征向量
        x = x.reshape(x.size(0), -1)
        # 全连接层
        x = torch.relu(self.linear1(x))
        x = torch.relu(self.linear2(x))
        # 返回输出结果
        return self.out(x)


# if __name__ == '__main__':
#     # 模型实例化
#     model = ImageClassification()
#     summary(model, input_size=(3, 32, 32), batch_size=1)

# 4.训练函数编写
def train(model, train_dataset):
    criterion = nn.CrossEntropyLoss()  # 构建损失函数
    optimizer = optim.Adam(model.parameters(), lr=1e-3)  # 构建优化方法
    epoch = 20  # 训练轮数
    for epoch_idx in range(epoch):
        # 构建数据加载器
        dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
        sam_num = 0  # 样本数量
        total_loss = 0.0  # 损失总和
        start = time.time()  # 开始时间
        # 遍历数据进行网络训练
        for x, y in dataloader:
            output = model(x)
            loss = criterion(output, y)  # 计算损失
            optimizer.zero_grad()  # 梯度清零
            loss.backward()  # 反向传播
            optimizer.step()  # 参数更新
            total_loss += loss.item()  # 统计损失和
            sam_num += 1
        print('epoch:%2s loss:%.5f time:%.2fs' % (epoch_idx + 1, total_loss / sam_num, time.time() - start))
    # 模型保存
    torch.save(model.state_dict(), 'data/image_classification.pth')




def test(valid_dataset):
    # 构建数据加载器
    dataloader = DataLoader(valid_dataset, batch_size=BATCH_SIZE, shuffle=True)
    # 加载模型并加载训练好的权重
    model = ImageClassification()
    model.load_state_dict(torch.load('data/image_classification.pth'))
    model.eval()
    # 计算精度
    total_correct = 0
    total_samples = 0
    # 遍历每个batch的数据,获取预测结果,计算精度
    for x, y in dataloader:
        output = model(x)
        total_correct += (torch.argmax(output, dim=-1) == y).sum()
        total_samples += len(y)
        # 打印精度
    print('Acc: %.2f' % (total_correct / total_samples))


if __name__ == '__main__':
    # 数据集加载
    train_dataset, valid_dataset = create_dataset()
    # 模型实例化
    model = ImageClassification()
    # 模型训练
    # train(model, train_dataset)
    # 模型预测
    test(valid_dataset)
相关推荐
java1234_小锋1 小时前
基于Python深度学习的车辆车牌识别系统(PyTorch2卷积神经网络CNN+OpenCV4实现)视频教程 - 车牌矩阵定位
python·深度学习·cnn·车牌识别
_codemonster4 小时前
深度学习实战(基于pytroch)系列(三十六)循环神经网络的pytorch简洁实现
pytorch·rnn·深度学习
自然语4 小时前
人工智能之数字生命-学习的过程
数据结构·人工智能·深度学习·学习·算法
Yuezero_4 小时前
Research Intern面试(一)——手敲LLM快速复习
pytorch·深度学习·算法
Coding茶水间5 小时前
基于深度学习的火焰检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
KG_LLM图谱增强大模型5 小时前
从人类专家到机器:大模型支持的人机协同本体与知识图谱自动构建
人工智能·深度学习·知识图谱·图谱增强大模型
ziwu5 小时前
【动物识别系统】Python+TensorFlow+Django+人工智能+深度学习+卷积神经网络算法
后端·深度学习·图像识别
科学最TOP5 小时前
时间序列的“语言”:从语言模型视角理解时序基础模型
人工智能·深度学习·机器学习·时间序列
_codemonster5 小时前
深度学习实战(基于pytroch)系列(四十四) 优化与深度学习
人工智能·深度学习
白日做梦Q5 小时前
深度学习训练中 Loss 为 Nan 的 10 种原因及解决方案
人工智能·深度学习