# 1.导入依赖包
import torch
import torch.nn as nn
from torchvision.datasets import CIFAR10
from torchvision.transforms import ToTensor
from torchvision.transforms import Compose
import torch.optim as optim
from torch.utils.data import DataLoader
import time
import matplotlib.pyplot as plt
from torchsummary import summary
BATCH_SIZE = 8
# 2. 获取数据集
def create_dataset():
# 加载数据集:训练集数据和测试数据
train = CIFAR10(root='data', train=True, transform=Compose([ToTensor()]))
valid = CIFAR10(root='data', train=False, transform=Compose([ToTensor()]))
# 返回数据集结果
return train, valid
# if __name__ == '__main__':
# # 数据集加载
# train_dataset, valid_dataset = create_dataset()
# # 数据集类别
# print("数据集类别:", train_dataset.class_to_idx)
# # 数据集中的图像数据
# print("训练集数据集:", train_dataset.data.shape)
# print("测试集数据集:", valid_dataset.data.shape)
# # 图像展示
# plt.figure(figsize=(2, 2))
# plt.imshow(train_dataset.data[1])
# plt.title(train_dataset.targets[1])
# plt.show()
# 3.模型构建
class ImageClassification(nn.Module):
# 定义网络结构
def __init__(self):
super(ImageClassification, self).__init__()
# 定义网络层:卷积层+池化层
self.conv1 = nn.Conv2d(3, 6, stride=1, kernel_size=3)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(6, 16, stride=1, kernel_size=3)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
# 全连接层
self.linear1 = nn.Linear(576, 120)
self.linear2 = nn.Linear(120, 84)
self.out = nn.Linear(84, 10)
# 定义前向传播
def forward(self, x):
# 卷积+relu+池化
x = torch.relu(self.conv1(x))
x = self.pool1(x)
# 卷积+relu+池化
x = torch.relu(self.conv2(x))
x = self.pool2(x)
# 将特征图做成以为向量的形式:相当于特征向量
x = x.reshape(x.size(0), -1)
# 全连接层
x = torch.relu(self.linear1(x))
x = torch.relu(self.linear2(x))
# 返回输出结果
return self.out(x)
# if __name__ == '__main__':
# # 模型实例化
# model = ImageClassification()
# summary(model, input_size=(3, 32, 32), batch_size=1)
# 4.训练函数编写
def train(model, train_dataset):
criterion = nn.CrossEntropyLoss() # 构建损失函数
optimizer = optim.Adam(model.parameters(), lr=1e-3) # 构建优化方法
epoch = 20 # 训练轮数
for epoch_idx in range(epoch):
# 构建数据加载器
dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
sam_num = 0 # 样本数量
total_loss = 0.0 # 损失总和
start = time.time() # 开始时间
# 遍历数据进行网络训练
for x, y in dataloader:
output = model(x)
loss = criterion(output, y) # 计算损失
optimizer.zero_grad() # 梯度清零
loss.backward() # 反向传播
optimizer.step() # 参数更新
total_loss += loss.item() # 统计损失和
sam_num += 1
print('epoch:%2s loss:%.5f time:%.2fs' % (epoch_idx + 1, total_loss / sam_num, time.time() - start))
# 模型保存
torch.save(model.state_dict(), 'data/image_classification.pth')
def test(valid_dataset):
# 构建数据加载器
dataloader = DataLoader(valid_dataset, batch_size=BATCH_SIZE, shuffle=True)
# 加载模型并加载训练好的权重
model = ImageClassification()
model.load_state_dict(torch.load('data/image_classification.pth'))
model.eval()
# 计算精度
total_correct = 0
total_samples = 0
# 遍历每个batch的数据,获取预测结果,计算精度
for x, y in dataloader:
output = model(x)
total_correct += (torch.argmax(output, dim=-1) == y).sum()
total_samples += len(y)
# 打印精度
print('Acc: %.2f' % (total_correct / total_samples))
if __name__ == '__main__':
# 数据集加载
train_dataset, valid_dataset = create_dataset()
# 模型实例化
model = ImageClassification()
# 模型训练
# train(model, train_dataset)
# 模型预测
test(valid_dataset)
卷积神经网络实现图像分类
weixin_431470862024-11-26 8:28
相关推荐
itwangyang5201 小时前
AIDD - 基于多层图注意力神经网络的药物-靶点相互作用预测模型研究高性能服务器1 小时前
《异构计算:多元算力聚变,点燃高性能计算新引擎 – CPU、GPU与FPGA算力融合》Ven%2 小时前
llamafactory报错:双卡4090GPU,训练qwen2.5:7B、14B时报错GPU显存不足(out of memory),轻松搞定~~~西西弗Sisyphus3 小时前
Vision Transformer (ViT) 论文的第二句话MUTA️4 小时前
AutoDL服务器深度学习使用过程forestsea4 小时前
【深度学习】Java DL4J基于 CNN 构建车辆识别与跟踪模型神秘的土鸡4 小时前
基于矩阵乘积态的生成模型:量子力学与生成任务的结合岁月如歌,青春不败4 小时前
R语言森林生态系统结构、功能与稳定性分析与可视化爱研究的小牛5 小时前
Midjourney技术浅析(一)mingo_敏6 小时前
深度学习中的并行策略概述:4 Tensor Parallelism