# 1.导入依赖包
import torch
import torch.nn as nn
from torchvision.datasets import CIFAR10
from torchvision.transforms import ToTensor
from torchvision.transforms import Compose
import torch.optim as optim
from torch.utils.data import DataLoader
import time
import matplotlib.pyplot as plt
from torchsummary import summary
BATCH_SIZE = 8
# 2. 获取数据集
def create_dataset():
# 加载数据集:训练集数据和测试数据
train = CIFAR10(root='data', train=True, transform=Compose([ToTensor()]))
valid = CIFAR10(root='data', train=False, transform=Compose([ToTensor()]))
# 返回数据集结果
return train, valid
# if __name__ == '__main__':
# # 数据集加载
# train_dataset, valid_dataset = create_dataset()
# # 数据集类别
# print("数据集类别:", train_dataset.class_to_idx)
# # 数据集中的图像数据
# print("训练集数据集:", train_dataset.data.shape)
# print("测试集数据集:", valid_dataset.data.shape)
# # 图像展示
# plt.figure(figsize=(2, 2))
# plt.imshow(train_dataset.data[1])
# plt.title(train_dataset.targets[1])
# plt.show()
# 3.模型构建
class ImageClassification(nn.Module):
# 定义网络结构
def __init__(self):
super(ImageClassification, self).__init__()
# 定义网络层:卷积层+池化层
self.conv1 = nn.Conv2d(3, 6, stride=1, kernel_size=3)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(6, 16, stride=1, kernel_size=3)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
# 全连接层
self.linear1 = nn.Linear(576, 120)
self.linear2 = nn.Linear(120, 84)
self.out = nn.Linear(84, 10)
# 定义前向传播
def forward(self, x):
# 卷积+relu+池化
x = torch.relu(self.conv1(x))
x = self.pool1(x)
# 卷积+relu+池化
x = torch.relu(self.conv2(x))
x = self.pool2(x)
# 将特征图做成以为向量的形式:相当于特征向量
x = x.reshape(x.size(0), -1)
# 全连接层
x = torch.relu(self.linear1(x))
x = torch.relu(self.linear2(x))
# 返回输出结果
return self.out(x)
# if __name__ == '__main__':
# # 模型实例化
# model = ImageClassification()
# summary(model, input_size=(3, 32, 32), batch_size=1)
# 4.训练函数编写
def train(model, train_dataset):
criterion = nn.CrossEntropyLoss() # 构建损失函数
optimizer = optim.Adam(model.parameters(), lr=1e-3) # 构建优化方法
epoch = 20 # 训练轮数
for epoch_idx in range(epoch):
# 构建数据加载器
dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
sam_num = 0 # 样本数量
total_loss = 0.0 # 损失总和
start = time.time() # 开始时间
# 遍历数据进行网络训练
for x, y in dataloader:
output = model(x)
loss = criterion(output, y) # 计算损失
optimizer.zero_grad() # 梯度清零
loss.backward() # 反向传播
optimizer.step() # 参数更新
total_loss += loss.item() # 统计损失和
sam_num += 1
print('epoch:%2s loss:%.5f time:%.2fs' % (epoch_idx + 1, total_loss / sam_num, time.time() - start))
# 模型保存
torch.save(model.state_dict(), 'data/image_classification.pth')
def test(valid_dataset):
# 构建数据加载器
dataloader = DataLoader(valid_dataset, batch_size=BATCH_SIZE, shuffle=True)
# 加载模型并加载训练好的权重
model = ImageClassification()
model.load_state_dict(torch.load('data/image_classification.pth'))
model.eval()
# 计算精度
total_correct = 0
total_samples = 0
# 遍历每个batch的数据,获取预测结果,计算精度
for x, y in dataloader:
output = model(x)
total_correct += (torch.argmax(output, dim=-1) == y).sum()
total_samples += len(y)
# 打印精度
print('Acc: %.2f' % (total_correct / total_samples))
if __name__ == '__main__':
# 数据集加载
train_dataset, valid_dataset = create_dataset()
# 模型实例化
model = ImageClassification()
# 模型训练
# train(model, train_dataset)
# 模型预测
test(valid_dataset)
卷积神经网络实现图像分类
weixin_431470862024-11-26 8:28
相关推荐
irizhao8 小时前
基于深度学习的智能停车场系统设计与实现F_D_Z10 小时前
简明 | Yolo-v3结构理解摘要java1234_小锋11 小时前
Transformer 大语言模型(LLM)基石 - Transformer架构详解 - 自注意力机制(Self-Attention)原理介绍ney1878190247411 小时前
分类网络LeNet + FashionMNIST 准确率92.9%Coding茶水间11 小时前
基于深度学习的无人机视角检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)田里的水稻12 小时前
DT_digital_twin_ROS+Grazebo仿真飞Link12 小时前
GDN:深度学习时代的图偏差网络异常检测全解析吐个泡泡v13 小时前
深度学习中的“压缩与解压“艺术:自编码器与VAE详解l木本I14 小时前
uv 技术详解