# 1.导入依赖包
import torch
import torch.nn as nn
from torchvision.datasets import CIFAR10
from torchvision.transforms import ToTensor
from torchvision.transforms import Compose
import torch.optim as optim
from torch.utils.data import DataLoader
import time
import matplotlib.pyplot as plt
from torchsummary import summary
BATCH_SIZE = 8
# 2. 获取数据集
def create_dataset():
# 加载数据集:训练集数据和测试数据
train = CIFAR10(root='data', train=True, transform=Compose([ToTensor()]))
valid = CIFAR10(root='data', train=False, transform=Compose([ToTensor()]))
# 返回数据集结果
return train, valid
# if __name__ == '__main__':
# # 数据集加载
# train_dataset, valid_dataset = create_dataset()
# # 数据集类别
# print("数据集类别:", train_dataset.class_to_idx)
# # 数据集中的图像数据
# print("训练集数据集:", train_dataset.data.shape)
# print("测试集数据集:", valid_dataset.data.shape)
# # 图像展示
# plt.figure(figsize=(2, 2))
# plt.imshow(train_dataset.data[1])
# plt.title(train_dataset.targets[1])
# plt.show()
# 3.模型构建
class ImageClassification(nn.Module):
# 定义网络结构
def __init__(self):
super(ImageClassification, self).__init__()
# 定义网络层:卷积层+池化层
self.conv1 = nn.Conv2d(3, 6, stride=1, kernel_size=3)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(6, 16, stride=1, kernel_size=3)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
# 全连接层
self.linear1 = nn.Linear(576, 120)
self.linear2 = nn.Linear(120, 84)
self.out = nn.Linear(84, 10)
# 定义前向传播
def forward(self, x):
# 卷积+relu+池化
x = torch.relu(self.conv1(x))
x = self.pool1(x)
# 卷积+relu+池化
x = torch.relu(self.conv2(x))
x = self.pool2(x)
# 将特征图做成以为向量的形式:相当于特征向量
x = x.reshape(x.size(0), -1)
# 全连接层
x = torch.relu(self.linear1(x))
x = torch.relu(self.linear2(x))
# 返回输出结果
return self.out(x)
# if __name__ == '__main__':
# # 模型实例化
# model = ImageClassification()
# summary(model, input_size=(3, 32, 32), batch_size=1)
# 4.训练函数编写
def train(model, train_dataset):
criterion = nn.CrossEntropyLoss() # 构建损失函数
optimizer = optim.Adam(model.parameters(), lr=1e-3) # 构建优化方法
epoch = 20 # 训练轮数
for epoch_idx in range(epoch):
# 构建数据加载器
dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
sam_num = 0 # 样本数量
total_loss = 0.0 # 损失总和
start = time.time() # 开始时间
# 遍历数据进行网络训练
for x, y in dataloader:
output = model(x)
loss = criterion(output, y) # 计算损失
optimizer.zero_grad() # 梯度清零
loss.backward() # 反向传播
optimizer.step() # 参数更新
total_loss += loss.item() # 统计损失和
sam_num += 1
print('epoch:%2s loss:%.5f time:%.2fs' % (epoch_idx + 1, total_loss / sam_num, time.time() - start))
# 模型保存
torch.save(model.state_dict(), 'data/image_classification.pth')
def test(valid_dataset):
# 构建数据加载器
dataloader = DataLoader(valid_dataset, batch_size=BATCH_SIZE, shuffle=True)
# 加载模型并加载训练好的权重
model = ImageClassification()
model.load_state_dict(torch.load('data/image_classification.pth'))
model.eval()
# 计算精度
total_correct = 0
total_samples = 0
# 遍历每个batch的数据,获取预测结果,计算精度
for x, y in dataloader:
output = model(x)
total_correct += (torch.argmax(output, dim=-1) == y).sum()
total_samples += len(y)
# 打印精度
print('Acc: %.2f' % (total_correct / total_samples))
if __name__ == '__main__':
# 数据集加载
train_dataset, valid_dataset = create_dataset()
# 模型实例化
model = ImageClassification()
# 模型训练
# train(model, train_dataset)
# 模型预测
test(valid_dataset)
卷积神经网络实现图像分类
weixin_431470862024-11-26 8:28
相关推荐
zhangjipinggom5 小时前
multi-head attention 多头注意力实现细节Zack_Liu6 小时前
深度学习基础模块闲看云起7 小时前
Bert:从“读不懂上下文”的AI,到真正理解语言IT小哥哥呀10 小时前
基于深度学习的数字图像分类实验与分析汉堡go12 小时前
1、机器学习与深度学习LiJieNiub12 小时前
基于 PyTorch 实现 MNIST 手写数字识别chxin1401613 小时前
Transformer注意力机制——动手学深度学习10jie*13 小时前
小杰深度学习(fourteen)——视觉-经典神经网络——ResNetjie*13 小时前
小杰深度学习(sixteen)——视觉-经典神经网络——MobileNetV2MYX_30913 小时前
第五章 神经网络的优化