卷积神经网络实现图像分类

复制代码
# 1.导入依赖包
import torch
import torch.nn as nn
from torchvision.datasets import CIFAR10
from torchvision.transforms import ToTensor
from torchvision.transforms import Compose
import torch.optim as optim
from torch.utils.data import DataLoader
import time
import matplotlib.pyplot as plt
from torchsummary import summary

BATCH_SIZE = 8


# 2. 获取数据集
def create_dataset():
    # 加载数据集:训练集数据和测试数据
    train = CIFAR10(root='data', train=True, transform=Compose([ToTensor()]))
    valid = CIFAR10(root='data', train=False, transform=Compose([ToTensor()]))
    # 返回数据集结果
    return train, valid


# if __name__ == '__main__':
#     # 数据集加载
#     train_dataset, valid_dataset = create_dataset()
#     # 数据集类别
#     print("数据集类别:", train_dataset.class_to_idx)
#     # 数据集中的图像数据
#     print("训练集数据集:", train_dataset.data.shape)
#     print("测试集数据集:", valid_dataset.data.shape)
#     # 图像展示
#     plt.figure(figsize=(2, 2))
#     plt.imshow(train_dataset.data[1])
#     plt.title(train_dataset.targets[1])
#     plt.show()


# 3.模型构建
class ImageClassification(nn.Module):
    # 定义网络结构
    def __init__(self):
        super(ImageClassification, self).__init__()
        # 定义网络层:卷积层+池化层
        self.conv1 = nn.Conv2d(3, 6, stride=1, kernel_size=3)
        self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
        self.conv2 = nn.Conv2d(6, 16, stride=1, kernel_size=3)
        self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
        # 全连接层
        self.linear1 = nn.Linear(576, 120)
        self.linear2 = nn.Linear(120, 84)
        self.out = nn.Linear(84, 10)

    # 定义前向传播
    def forward(self, x):
        # 卷积+relu+池化
        x = torch.relu(self.conv1(x))
        x = self.pool1(x)
        # 卷积+relu+池化
        x = torch.relu(self.conv2(x))
        x = self.pool2(x)
        # 将特征图做成以为向量的形式:相当于特征向量
        x = x.reshape(x.size(0), -1)
        # 全连接层
        x = torch.relu(self.linear1(x))
        x = torch.relu(self.linear2(x))
        # 返回输出结果
        return self.out(x)


# if __name__ == '__main__':
#     # 模型实例化
#     model = ImageClassification()
#     summary(model, input_size=(3, 32, 32), batch_size=1)

# 4.训练函数编写
def train(model, train_dataset):
    criterion = nn.CrossEntropyLoss()  # 构建损失函数
    optimizer = optim.Adam(model.parameters(), lr=1e-3)  # 构建优化方法
    epoch = 20  # 训练轮数
    for epoch_idx in range(epoch):
        # 构建数据加载器
        dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
        sam_num = 0  # 样本数量
        total_loss = 0.0  # 损失总和
        start = time.time()  # 开始时间
        # 遍历数据进行网络训练
        for x, y in dataloader:
            output = model(x)
            loss = criterion(output, y)  # 计算损失
            optimizer.zero_grad()  # 梯度清零
            loss.backward()  # 反向传播
            optimizer.step()  # 参数更新
            total_loss += loss.item()  # 统计损失和
            sam_num += 1
        print('epoch:%2s loss:%.5f time:%.2fs' % (epoch_idx + 1, total_loss / sam_num, time.time() - start))
    # 模型保存
    torch.save(model.state_dict(), 'data/image_classification.pth')




def test(valid_dataset):
    # 构建数据加载器
    dataloader = DataLoader(valid_dataset, batch_size=BATCH_SIZE, shuffle=True)
    # 加载模型并加载训练好的权重
    model = ImageClassification()
    model.load_state_dict(torch.load('data/image_classification.pth'))
    model.eval()
    # 计算精度
    total_correct = 0
    total_samples = 0
    # 遍历每个batch的数据,获取预测结果,计算精度
    for x, y in dataloader:
        output = model(x)
        total_correct += (torch.argmax(output, dim=-1) == y).sum()
        total_samples += len(y)
        # 打印精度
    print('Acc: %.2f' % (total_correct / total_samples))


if __name__ == '__main__':
    # 数据集加载
    train_dataset, valid_dataset = create_dataset()
    # 模型实例化
    model = ImageClassification()
    # 模型训练
    # train(model, train_dataset)
    # 模型预测
    test(valid_dataset)
相关推荐
holeer2 小时前
【V2.0】王万良《人工智能导论》笔记|《人工智能及其应用》课程教材笔记
神经网络·机器学习·ai·cnn·nlp·知识图谱·智能计算
啊森要自信2 小时前
CANN runtime 深度解析:异构计算架构下运行时组件的性能保障与功能增强实现逻辑
深度学习·架构·transformer·cann
kyle~2 小时前
深度学习---长短期记忆网络LSTM
人工智能·深度学习·lstm
DatGuy2 小时前
Week 36: 量子深度学习入门:辛量子神经网络与物理守恒
人工智能·深度学习·神经网络
肾透侧视攻城狮2 小时前
《解锁计算机视觉:深度解析 PyTorch torchvision 核心与进阶技巧》
人工智能·深度学习·计算机视觉模快·支持的数据集类型·常用变换方法分类·图像分类流程实战·视觉模快高级功能
CoovallyAIHub2 小时前
让本地知识引导AI追踪社区变迁,让AI真正理解社会现象
深度学习·算法·计算机视觉
算法狗23 小时前
大模型面试题:在混合精度训练中如何选择合适的精度
人工智能·深度学习·机器学习·语言模型
图学习小组3 小时前
Degradation-Aware Feature Perturbation for All-in-One Image Restoration
人工智能·深度学习·计算机视觉
Faker66363aaa3 小时前
药品包装识别与分类系统:基于Faster R-CNN R50 FPN的Groie数据集训练_1
分类·r语言·cnn
CoovallyAIHub3 小时前
AAAI 2026这篇杰出论文说了什么?用LLM给CLIP换了个“聪明大脑”
深度学习·算法·计算机视觉