# 1.导入依赖包
import torch
import torch.nn as nn
from torchvision.datasets import CIFAR10
from torchvision.transforms import ToTensor
from torchvision.transforms import Compose
import torch.optim as optim
from torch.utils.data import DataLoader
import time
import matplotlib.pyplot as plt
from torchsummary import summary
BATCH_SIZE = 8
# 2. 获取数据集
def create_dataset():
# 加载数据集:训练集数据和测试数据
train = CIFAR10(root='data', train=True, transform=Compose([ToTensor()]))
valid = CIFAR10(root='data', train=False, transform=Compose([ToTensor()]))
# 返回数据集结果
return train, valid
# if __name__ == '__main__':
# # 数据集加载
# train_dataset, valid_dataset = create_dataset()
# # 数据集类别
# print("数据集类别:", train_dataset.class_to_idx)
# # 数据集中的图像数据
# print("训练集数据集:", train_dataset.data.shape)
# print("测试集数据集:", valid_dataset.data.shape)
# # 图像展示
# plt.figure(figsize=(2, 2))
# plt.imshow(train_dataset.data[1])
# plt.title(train_dataset.targets[1])
# plt.show()
# 3.模型构建
class ImageClassification(nn.Module):
# 定义网络结构
def __init__(self):
super(ImageClassification, self).__init__()
# 定义网络层:卷积层+池化层
self.conv1 = nn.Conv2d(3, 6, stride=1, kernel_size=3)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(6, 16, stride=1, kernel_size=3)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
# 全连接层
self.linear1 = nn.Linear(576, 120)
self.linear2 = nn.Linear(120, 84)
self.out = nn.Linear(84, 10)
# 定义前向传播
def forward(self, x):
# 卷积+relu+池化
x = torch.relu(self.conv1(x))
x = self.pool1(x)
# 卷积+relu+池化
x = torch.relu(self.conv2(x))
x = self.pool2(x)
# 将特征图做成以为向量的形式:相当于特征向量
x = x.reshape(x.size(0), -1)
# 全连接层
x = torch.relu(self.linear1(x))
x = torch.relu(self.linear2(x))
# 返回输出结果
return self.out(x)
# if __name__ == '__main__':
# # 模型实例化
# model = ImageClassification()
# summary(model, input_size=(3, 32, 32), batch_size=1)
# 4.训练函数编写
def train(model, train_dataset):
criterion = nn.CrossEntropyLoss() # 构建损失函数
optimizer = optim.Adam(model.parameters(), lr=1e-3) # 构建优化方法
epoch = 20 # 训练轮数
for epoch_idx in range(epoch):
# 构建数据加载器
dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
sam_num = 0 # 样本数量
total_loss = 0.0 # 损失总和
start = time.time() # 开始时间
# 遍历数据进行网络训练
for x, y in dataloader:
output = model(x)
loss = criterion(output, y) # 计算损失
optimizer.zero_grad() # 梯度清零
loss.backward() # 反向传播
optimizer.step() # 参数更新
total_loss += loss.item() # 统计损失和
sam_num += 1
print('epoch:%2s loss:%.5f time:%.2fs' % (epoch_idx + 1, total_loss / sam_num, time.time() - start))
# 模型保存
torch.save(model.state_dict(), 'data/image_classification.pth')
def test(valid_dataset):
# 构建数据加载器
dataloader = DataLoader(valid_dataset, batch_size=BATCH_SIZE, shuffle=True)
# 加载模型并加载训练好的权重
model = ImageClassification()
model.load_state_dict(torch.load('data/image_classification.pth'))
model.eval()
# 计算精度
total_correct = 0
total_samples = 0
# 遍历每个batch的数据,获取预测结果,计算精度
for x, y in dataloader:
output = model(x)
total_correct += (torch.argmax(output, dim=-1) == y).sum()
total_samples += len(y)
# 打印精度
print('Acc: %.2f' % (total_correct / total_samples))
if __name__ == '__main__':
# 数据集加载
train_dataset, valid_dataset = create_dataset()
# 模型实例化
model = ImageClassification()
# 模型训练
# train(model, train_dataset)
# 模型预测
test(valid_dataset)
卷积神经网络实现图像分类
weixin_431470862024-11-26 8:28
相关推荐
bst@微胖子21 分钟前
HuggingFace项目实战之分类任务实战YukiMori2329 分钟前
基于Paddle微调ERNIE的中文情感分析实战教程小途软件37 分钟前
基于深度学习的人脸检测算法研究guoketg1 小时前
Vision Transformer(ViT)的讲解和面试题目讲解热心不起来的市民小周1 小时前
测测你的牌:基于 MobileNetV2 的车牌内容检测空山新雨后、2 小时前
Masked AutoEncoder(MAE)详解:高 Mask 率如何造就强视觉表征Francek Chen2 小时前
【自然语言处理】应用06:针对序列级和词元级应用微调BERTekkoalex2 小时前
强化学习中参数的设置datamonday2 小时前
[EAI-037] π0.6* 基于RECAP方法与优势调节的自进化VLA机器人模型