NLP论文速读(Apple出品)|迈向更好的多模态指令遵循能力评估

**论文速读|**MIA-Bench: Towards Better Instruction Following Evaluation of Multimodal LLMs

论文信息:

简介:

本文的背景是多模态大型语言模型(MLLMs )的快速发展,这些模型在理解和响应视觉输入方面展现出了增强的能力,通常被称为多模态"指令遵循"。随着这些模型的进步,需要有相应的基准测试来衡量它们在遵循复杂指令方面的能力。现有的基准测试主要分为固定形式的视觉问答(VQA)和自由形式的对话,但这些测试通常只粗略评估模型对指令的遵循能力,对于精确遵循复杂指令的能力评估较少。本文的动机是创建一个新的基准测试MIA-Benc h ,以推动MLLMs 在实际应用中的精确性和可靠性,确保模型输出不仅符合指令的一般意图,而且完全匹配提供的确切规格。通过建立更严格的标准,作者希望推动模型精度和可靠性的边界,并为未来的MLLM训练方法提供指导。

论文方法:

本文提出了MIA-Bench,这是一个新的基准测试,专门设计用来评估MLLMs严格遵循"指令遵循"的能力。

MIA-Bench包含400个精心制作的图像-提示对,覆盖了动物、食物、地标、体育、艺术、景观、文本等多样化的图像内容,以覆盖真实世界场景的广泛范围。

这些提示具有不同的复杂性级别,并且是组合性的,包含五个基础指令类别,旨在探究模型的语言灵活性、语法准确性和描述忠实度。包括描述、长度限制、提及、类型、语法、数学、视角和OCR(光学字符识别)等子指令类别。

论文实验:

根据Table 1,论文的实验部分主要涉及了对多模态大型语言模型(MLLMs)在MIA-Bench基准测试上的性能评估。

实验共评估了29个流行的MLLMs,包括封闭源模型(如GPT-4o、Gemini Pro、Claude-3、Reka)和开源模型(如LLaVANeXT、Intern-VL-Chat-1.5、CogVLM2、Phi-3-Vision)。

评估指标涵盖了多个方面,包括模型对指令的描述能力(Description)、长度限制(Length Limit)、提及(Mention)、类型(Genre)、语法(Grammar)、数学(Math)、视角(Perspective)和光学字符识别(OCR)。

GPT-4o模型在整体上表现最佳,总分为88.58,显示出在不同指令遵循类别中的优越性。Reka模型在描述内容的准确性方面表现最好,分数超过90,表明这些模型在生成连贯且上下文适宜的文本方面表现良好。

在类型(Genre)类别中,GPT-4v和GPT-4o表现出色,分数超过94,显示出对语言细微差别的卓越掌握。

GPT-4o在语法(Grammar)类别中得分最高,为85.70,表明其在语法正确性和句子结构方面符合特定指令要求的能力较强。在尊重规定长度限制方面,GPT-4o得分为92.73,这对于需要简洁精确回答的任务至关重要。

论文链接:

https://arxiv.org/abs/2407.01509

相关推荐
CV实验室2 分钟前
CV论文速递: 覆盖医学影像分析、视频理解与生成、3D场景理解与定位等方向! (10.27-10.31)
人工智能·计算机视觉·3d·音视频
PixelMind3 分钟前
【LUT技术专题】SVDLUT: 基于SVD优化的3DLUT
图像处理·深度学习·lut
飞哥数智坊17 分钟前
MiniMax 是谁?为什么 M2 一出,大家又沸腾了?
人工智能
leafff12318 分钟前
AI研究:轻量模型和专用模型在算力优化上的差异对游戏制作的效率和质量有何影响?
人工智能·游戏
吃鱼不卡次38 分钟前
RT-DETR解码模块(Decoder)
人工智能·深度学习·cross attention·rt-detr·匈牙利匹配·self attention·对比去噪训练
zhan11451438 分钟前
解析平面卷积/pytorch的nn.Conv2d的计算步骤,in_channels与out_channels如何计算而来
人工智能·pytorch·深度学习·cnn·卷积神经网络
Juchecar39 分钟前
假设人类能用光波沟通……
人工智能
K姐研究社40 分钟前
AipexBase怎么用?AI 原生BaaS平台一句话做后端开发
人工智能
IT_陈寒42 分钟前
SpringBoot 3.2新特性实战:这5个隐藏功能让开发效率翻倍🚀
前端·人工智能·后端
IT_陈寒1 小时前
Vue3性能优化实战:这5个技巧让我的应用加载速度提升70% 🚀
前端·人工智能·后端