【小白学机器学习36】关于独立概率,联合概率,交叉概率,交叉概率和,总概率等 概念辨析的例子

目录

[1 先说结论](#1 先说结论)

[2 联合概率](#2 联合概率)

[3 边缘概率](#3 边缘概率)

[4 (行/列)边缘概率的和= 总概率=1](#4 (行/列)边缘概率的和= 总概率=1)

[5 条件概率](#5 条件概率)

[5.1 条件概率的除法公式](#5.1 条件概率的除法公式)

[5.2 条件概率和联合概率区别](#5.2 条件概率和联合概率区别)


1 先说结论

关于独立概率,联合概率,交叉概率,交叉概率和,总概率

|------|----|---|---|----|---|---|---|
| 类型 | 含义 |   |   | 计算 |   |   |   |
| 联合概率 | 两个独立事件一起发生的概率 ||| 两个事件概率相乘 || |   |
| 边缘概率 | 同1行 /同1列的所有联合概率相加的总和 ||| 两个联合概率相加 || |   |
| 条件概率 | 一定已知条件下发生的概率 ||   | 两个事件的联合概率/已经发生的概率 ||||

2 联合概率

  • 独立概率
  • 联合概率:独立概率1*独立概率2

因为我们知道红色牌概率=1/2, 数字牌概率=40/52,因此 红色数字牌概率=联合概率=1/2*40/52

3 边缘概率

  • 边缘概率:同1行 /同1列的所有联合概率相加的总和。
  1. 边缘概率分2种:行边缘概率,列边缘概率
  2. 为什么要全部相加?
  3. 因为同1行/列 代表了所有的可能性,必须全加起来才=边缘概率

4 (行/列)边缘概率的和= 总概率=1

  • 边缘概率的和只有2个
  1. 所有行的边缘概率和
  2. 所有列的边缘概率和
  • (所有行的)Σ边缘概率和=1 = 总概率
  • (所有列的)Σ边缘概率和=1= 总概率
  • (概率空间的)总概率=1
  • 看行
  • 边缘概率=2个概率相加。也就是 红色数字牌+红色人物牌=显然等于所有红色牌=1/2,
  • Σ边缘概率之和=2个边缘概率相加。也就是 all红色牌+all蓝色牌=显然等于所有牌=1=100%,
  • 看列
  • 边缘概率=2个概率相加。也就是 红色数字牌+黑色数字牌=20/52+20/52=40/52=所有的数字牌40/52,结果一样
  • Σ边缘概率之和=2个边缘概率相加。也就是 all数字牌+all人物牌=40/52+12/52=显然等于所有牌=1=100%,

5 条件概率

5.1 条件概率的除法公式

  • 直接定义和除法公式
  • 条件概率= 事件B已经发生后,A发生的概率
  • 条件概率= P(A|B)= P(AB)/P(B)

5.2 条件概率和联合概率区别

  • 条件概率=联合概率/ 条件本身发生的概率

  • 条件概率= P(A|B)= P(AB)/P(B)

  • 而联合概率写为P(AB) 或者P(A,B),或者P(A and B)

  • 联合概率= P(AB) /1

  • 条件概率= P(AB) /P(B)

  • 联合概率= P(AB) /1

  • 可以发现两者公式不同,主要是公式分母不同,一个是条件发生概率P(B),一个是全概率1

  • 下图中 sample space =1 样本空间的全集

相关推荐
初次攀爬者3 分钟前
RAG知识库核心优化|基于语义的智能文本切片方案(对比字符串长度分割)
人工智能·后端
宋情写5 分钟前
JavaAI05-Chain、MCP
java·人工智能
whaosoft-1436 分钟前
51c~目标检测~合集3
人工智能
掘金一周7 分钟前
高德地图与Three.js结合实现3D大屏可视化 | 掘金一周 1.8
前端·人工智能·后端
北京耐用通信10 分钟前
耐达讯自动化CAN转PROFIBUS网关让软启动器如何让包装线告别“信号迷宫”
人工智能·物联网·网络协议·自动化·信息与通信
ZhuNian的学习乐园16 分钟前
LLM知识检索增强:RAG_系统化解析与工程实践
人工智能·算法
paopao_wu19 分钟前
LangChainV1.0[05]-记忆管理
人工智能·python·langchain·ai编程
佛祖让我来巡山19 分钟前
Numpy
机器学习·数据分析·numpy·矢量运算
汤姆yu25 分钟前
基于深度学习的暴力行为识别系统
人工智能·深度学习
技术宅学长25 分钟前
关于CLS与mean_pooling的一些笔记
人工智能·pytorch·笔记·pycharm