【小白学机器学习36】关于独立概率,联合概率,交叉概率,交叉概率和,总概率等 概念辨析的例子

目录

[1 先说结论](#1 先说结论)

[2 联合概率](#2 联合概率)

[3 边缘概率](#3 边缘概率)

[4 (行/列)边缘概率的和= 总概率=1](#4 (行/列)边缘概率的和= 总概率=1)

[5 条件概率](#5 条件概率)

[5.1 条件概率的除法公式](#5.1 条件概率的除法公式)

[5.2 条件概率和联合概率区别](#5.2 条件概率和联合概率区别)


1 先说结论

关于独立概率,联合概率,交叉概率,交叉概率和,总概率

|------|----|---|---|----|---|---|---|
| 类型 | 含义 |   |   | 计算 |   |   |   |
| 联合概率 | 两个独立事件一起发生的概率 ||| 两个事件概率相乘 || |   |
| 边缘概率 | 同1行 /同1列的所有联合概率相加的总和 ||| 两个联合概率相加 || |   |
| 条件概率 | 一定已知条件下发生的概率 ||   | 两个事件的联合概率/已经发生的概率 ||||

2 联合概率

  • 独立概率
  • 联合概率:独立概率1*独立概率2

因为我们知道红色牌概率=1/2, 数字牌概率=40/52,因此 红色数字牌概率=联合概率=1/2*40/52

3 边缘概率

  • 边缘概率:同1行 /同1列的所有联合概率相加的总和。
  1. 边缘概率分2种:行边缘概率,列边缘概率
  2. 为什么要全部相加?
  3. 因为同1行/列 代表了所有的可能性,必须全加起来才=边缘概率

4 (行/列)边缘概率的和= 总概率=1

  • 边缘概率的和只有2个
  1. 所有行的边缘概率和
  2. 所有列的边缘概率和
  • (所有行的)Σ边缘概率和=1 = 总概率
  • (所有列的)Σ边缘概率和=1= 总概率
  • (概率空间的)总概率=1
  • 看行
  • 边缘概率=2个概率相加。也就是 红色数字牌+红色人物牌=显然等于所有红色牌=1/2,
  • Σ边缘概率之和=2个边缘概率相加。也就是 all红色牌+all蓝色牌=显然等于所有牌=1=100%,
  • 看列
  • 边缘概率=2个概率相加。也就是 红色数字牌+黑色数字牌=20/52+20/52=40/52=所有的数字牌40/52,结果一样
  • Σ边缘概率之和=2个边缘概率相加。也就是 all数字牌+all人物牌=40/52+12/52=显然等于所有牌=1=100%,

5 条件概率

5.1 条件概率的除法公式

  • 直接定义和除法公式
  • 条件概率= 事件B已经发生后,A发生的概率
  • 条件概率= P(A|B)= P(AB)/P(B)

5.2 条件概率和联合概率区别

  • 条件概率=联合概率/ 条件本身发生的概率

  • 条件概率= P(A|B)= P(AB)/P(B)

  • 而联合概率写为P(AB) 或者P(A,B),或者P(A and B)

  • 联合概率= P(AB) /1

  • 条件概率= P(AB) /P(B)

  • 联合概率= P(AB) /1

  • 可以发现两者公式不同,主要是公式分母不同,一个是条件发生概率P(B),一个是全概率1

  • 下图中 sample space =1 样本空间的全集

相关推荐
Johny_Zhao11 分钟前
Vmware workstation安装部署微软WSUS服务应用系统
网络·人工智能·网络安全·信息安全·云计算·系统运维·wsus
carpell42 分钟前
【语义分割专栏】:FCN原理篇
人工智能·深度学习·计算机视觉·语义分割
东莞呵呵1 小时前
吴恩达机器学习(1)——机器学习算法分类
算法·机器学习·分类
满怀10152 小时前
【生成式AI文本生成实战】从GPT原理到企业级应用开发
人工智能·gpt
微刻时光2 小时前
影刀处理 Excel:智能工具带来的高效变革
人工智能·python·低代码·自动化·excel·rpa·影刀rpa
小技工丨3 小时前
LLaMA-Factory:环境准备
机器学习·大模型·llama·llama-factory
聚客AI4 小时前
ChatGPT到Claude全适配:跨模型Prompt高级设计规范与迁移技巧
人工智能·机器学习·语言模型·自然语言处理·langchain·transformer·llama
小羊Linux客栈4 小时前
自动化:批量文件重命名
运维·人工智能·python·自动化·游戏程序
Mr数据杨9 小时前
【Dv3Admin】插件 dv3admin_chatgpt 集成大语言模型智能模块
人工智能·语言模型·chatgpt
zm-v-159304339869 小时前
AI 赋能 Copula 建模:大语言模型驱动的相关性分析革新
人工智能·语言模型·自然语言处理