人名分类器(nlp)

复制代码
# coding: utf-8
import os

os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'

# 导入torch工具
import json

import torch
# 导入nn准备构建模型
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
# 导入torch的数据源 数据迭代器工具包
from torch.utils.data import Dataset, DataLoader
# 用于获得常见字母及字符规范化
import string
# 导入时间工具包
import time
# 引入制图工具包
import matplotlib.pyplot as plt
# 从io中导入文件打开方法
from io import open

# 1 获取常用的字符 标点,把每个char字符作为一个token,用onehot编码表示token
# 因此我们的词表就是 char表 (字符表) 57个char
all_letters = string.ascii_letters + " ,.;'"
print(all_letters)

n_letter = len(all_letters)  # 词表的大小
print('字符表的长度:', n_letter)

# 2 获取国家的类别种数
# 国家名 种类数
categorys = ['Italian', 'English', 'Arabic', 'Spanish', 'Scottish', 'Irish', 'Chinese', 'Vietnamese', 'Japanese',
             'French', 'Greek', 'Dutch', 'Korean', 'Polish', 'Portuguese', 'Russian', 'Czech', 'German']
# 国家名 个数,就是模型的 (linear输出维度) 分类数
categorynum = len(categorys)
print('categorys--->', categorys)


# 3 读取数据
def read_data(filename):
    # 3.1 初始化空列表两个
    my_list_x, my_list_y = [], []

    # 3.2 读取文件内容
    with open(filename, 'r', encoding='utf-8') as fr:
        for line in fr.readlines():
            # 异常点判断:改行长度<=5,说明这是异常样本,直接跳到下一行
            if len(line) <= 5:
                continue
            x, y = line.strip().split('\t')
            my_list_x.append(x)
            my_list_y.append(y)

    # 3.3 返回两个列表
    return my_list_x, my_list_y


# 4 构建数据集
class NameClsDataset(Dataset):
    def __init__(self, mylist_x, mylist_y):
        self.mylist_x = mylist_x
        self.mylist_y = mylist_y

    def __len__(self):
        return len(self.mylist_x)

    def __getitem__(self, item):
        # 01 item 异常值出处理
        index = min(max(item, 0), len(self.mylist_x) - 1)

        # 02 根据idx拿到人名 国家名
        x = self.mylist_x[index]
        y = self.mylist_y[index]

        # 03 完成onehot
        tensor_x = torch.zeros(len(x), n_letter)
        for idx, letter in enumerate(x):
            tensor_x[idx][all_letters.find(letter)] = 1

        # 04 获得标签
        tensor_y = torch.tensor(categorys.index(y), dtype=torch.long)

        return tensor_x, tensor_y


# 5 构建dataloader
def get_dataloader():
    filename = './data/name_classfication.txt'
    my_list_x, my_list_y = read_data(filename)
    mydataset = NameClsDataset(my_list_x, my_list_y)
    my_dataloader = DataLoader(
        mydataset,
        batch_size=1,
        shuffle=True,  # 打乱顺序
        # drop_last=True,  # 是否丢弃最后那个不足一个batch_size的数据组
        # collate_fn=collate_fn,  # 处理一个batch的数据为整齐的维度
    )
    x, y = next(iter(my_dataloader))
    # print(x)
    # print(x.shape)
    # print(y)
    return my_dataloader


# 6 创建rnn模型
class MyRNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size, num_layers=1):
        super().__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
        self.num_layers = num_layers

        self.rnn = nn.RNN(self.input_size, self.hidden_size,
                          self.num_layers, batch_first=True)
        # self.linear = nn.Linear(self.hidden_size, self.hidden_size)
        self.linear = nn.Linear(self.hidden_size, self.output_size)
        self.softmax = nn.LogSoftmax(dim=-1)

    def forward(self, input):
        # input.shape = (1, 9, 57)
        # hidden.shape = (1, 1, 128)
        # rnn_output.shape = (1, 9, 128)
        # rnn_hn.shape = (1, 1, 128)
        # rnn_output, _ = self.rnn(input)
        rnn_output, rnn_hn = self.rnn(input)

        # temp.shape = (1, 128)
        # temp = rnn_output[0][-1].unsqueeze(0)
        temp = rnn_hn[0]

        # output.shape=(1,18)
        # self.softmax(output) (2, 18)
        output = self.linear(temp)  # 可以接受三维数据
        return self.softmax(output), rnn_hn


# 7 测试RNN
def ceshiRNN():
    # 1 拿到数据
    my_dataloader = get_dataloader()

    # 2 实例化模型
    input_size = n_letter  # 字符表的大小 (词表的大小)
    hidden_size = 128  # 超参数 768,rnn输出维度
    output_size = len(categorys)  # 18,分类总数
    my_rnn = MyRNN(input_size, hidden_size, output_size)

    # 3 将数据送入到模型
    x, y = next(iter(my_dataloader))
    output, hn = my_rnn(x)  # output.shape = (1, 18)
    print(output.shape)
    print(hn.shape)


# 8 训练RNN
def train_my_rnn():
    epochs = 1
    my_lr = 1e-3
    # 1 读取数据
    my_list_x, my_list_y = read_data('./data/name_classfication.txt')
    # 2 定义dataset
    myDataset = NameClsDataset(my_list_x, my_list_y)
    # 3 实例化dataloader
    my_dataloader = DataLoader(myDataset, batch_size=1, shuffle=True)
    # 4 实例化RNN模型
    input_size = 57
    hidden_size = 128
    output_size = 18
    my_rnn = MyRNN(input_size, hidden_size, output_size)

    # 5 损失函数
    my_crossentropy = nn.NLLLoss()
    # 6 优化器
    my_optimizer = optim.Adam(my_rnn.parameters(), lr=my_lr)

    # 7 日志
    start_time = time.time()
    total_iter_num = 0  # 已经训练好的样本数
    total_loss = 0  # 总的loss
    total_loss_list = []  # 每隔多少步存储loss-avg
    total_acc_num = 0
    total_acc_list = []  # 存储间隔准确率acc-avg

    # 8 开始训练
    # 8.1 外部循环
    for epoch_idx in range(epochs):
        # 8.2 batch循环
        for i, (x, y) in enumerate(my_dataloader):
            # 8.3 将x送入到模型 一轮模型训练
            output, hn = my_rnn(x)
            my_loss = my_crossentropy(output, y)
            my_optimizer.zero_grad()
            my_loss.backward()
            my_optimizer.step()

            total_iter_num += 1
            total_loss += my_loss.item()
            item1 = 1 if torch.argmax(output, dim=-1).item() == y.item() else 0
            total_acc_num += item1

            # 每隔 100 步存储avg-loss acc-avg
            if total_iter_num % 100 == 0:
                # 保存一下平均损失
                loss_avg = total_loss / total_iter_num
                total_loss_list.append(loss_avg)

                # acc-avg
                acc_avg = total_acc_num / total_iter_num
                total_acc_list.append(acc_avg)

            if total_iter_num % 1000 == 0:
                loss_avg = total_loss / total_iter_num
                acc_avg = total_acc_num / total_iter_num
                end_time = time.time()
                use_time = end_time - start_time
                print(
                    '当前的训练批次:%d, 平均损失:%.5f, 训练时间:%.3f, 准确率:%.2f' % (
                        epoch_idx + 1,
                        loss_avg,
                        use_time,
                        acc_avg
                    )
                )

        # 9 保存模型
        torch.save(my_rnn.state_dict(), './model/my_rnn.bin')

    # 10 结束
    all_time = time.time() - start_time
    print('总耗时:', all_time)
    return total_loss_list, total_acc_list, all_time


# 9 将模型结果进行保存,方便进行读取
def save_rnn_res():
    # 1 训练模型,得到需要的结果
    total_loss_list, total_acc_list, all_time = train_my_rnn()
    # 2 定义一个字典
    dict1 = {
        'loss': total_loss_list,
        'time': all_time,
        'acc': total_acc_list
    }
    # 3 保存成json
    with open('./data/rnn_result.json', 'w') as fw:
        fw.write(json.dumps(dict1))


# 10 读取模型结果json
def read_json(json_path):
    with open(json_path, 'r') as fr:
        # '{a:1, b:2,,,}'  --> json.loads()
        # json.load() 加载json文件
        res = json.load(fr)
    return res


# 11 绘图
def plt_RNN():
    # 1 拿到数据
    rnn_results = read_json('./data/rnn_result-epoch3.json')
    total_loss_list_rnn, all_time_rnn, total_acc_list_rnn = rnn_results['loss'], rnn_results['time'], rnn_results['acc']
    lstm_results = read_json('./data/lstm_result-epoch3.json')
    total_loss_list_lstm, all_time_lstm, total_acc_list_lstm = lstm_results['loss'], lstm_results['time'], lstm_results[
        'acc']
    gru_results = read_json('./data/gru_result-epoch3.json')
    total_loss_list_gru, all_time_gru, total_acc_list_gru = gru_results['loss'], gru_results['time'], gru_results['acc']

    # 2 绘制loss对比曲线图
    plt.figure(0)
    plt.plot(total_loss_list_rnn, label='RNN')
    plt.plot(total_loss_list_lstm, label='LSTM', color='red')
    plt.plot(total_loss_list_gru, label='GRU', color='orange')
    plt.legend(loc='upper right')
    plt.savefig('./picture/loss.png')
    plt.show()

    # 3 绘制耗时柱状图
    plt.figure(1)
    x_data = ['RNN', 'LSTM', 'GRU']
    y_data = [all_time_rnn, all_time_lstm, all_time_gru]
    plt.bar(range(len(x_data)), y_data, tick_label=x_data)
    plt.savefig('./picture/use_time.png')
    plt.show()

    # 4 绘制acc曲线图
    plt.figure(2)
    plt.plot(total_acc_list_rnn, label='RNN')
    plt.plot(total_acc_list_lstm, label='LSTM', color='red')
    plt.plot(total_acc_list_gru, label='GRU', color='orange')
    plt.legend(loc='upper right')
    plt.savefig('./picture/acc.png')
    plt.show()


# 12 定义预测输入的x --》 tensor_x
def line2tensor(x):
    tensor_x = torch.zeros(len(x), n_letter)
    for li, letter in enumerate(x):
        tensor_x[li][all_letters.find(letter)] = 1
    return tensor_x


# 13 预测主函数
def rnn_predict(x):
    # 1 x --》 tensor_x
    tensor_x = line2tensor(x)
    # 2 实力化模型
    my_rnn = MyRNN(input_size=57, hidden_size=128, output_size=18)
    my_rnn.load_state_dict(torch.load('./model/my_rnn.bin'))

    # 3 预测
    with torch.no_grad():  # 预测时不去计算梯度
        input0 = tensor_x.unsqueeze(0)  # input0 是三维的,rnn需要
        output, hn = my_rnn(input0)
        topv, topi = output.topk(3, 1, True)
        print('人名是', x)

        # 4 打印topk个
        for i in range(3):
            value = topv[0][i]
            index = topi[0][i]
            cate = categorys[index]
            print('国家名是:', cate)


if __name__ == '__main__':
    # filename = './data/name_classfication.txt'
    # x, y = read_data(filename)
    # print(x)
    # print(y)
    # get_dataloader()
    # ceshiRNN()
    # train_my_rnn()
    # plt_RNN()

    rnn_predict('zhang')
相关推荐
King.6241 小时前
SQLynx 数据库管理平台 3.6.0 全新发布:全面支持华为数据库和ClickHouse,代码提示更智能!
大数据·数据库·人工智能·sql·mysql·clickhouse·华为
Dollhan3 小时前
ARTS-01
python·算法
深圳市青牛科技实业有限公司 小芋圆3 小时前
GC8872 是一款带故障报告功能的刷式直流电机驱动芯片, 适用于打印机、电器、工业设备以及其他小型机器。
人工智能·科技·stm32·单片机·嵌入式硬件·机器人
子午4 小时前
基于Python深度学习【眼疾识别】系统设计与实现+人工智能+机器学习+TensorFlow算法
人工智能·python·深度学习
云天徽上5 小时前
【数据可视化-11】全国大学数据可视化分析
人工智能·机器学习·信息可视化·数据挖掘·数据分析
小馋喵知识杂货铺5 小时前
pytest 截图功能
开发语言·python
李洋-蛟龙腾飞公司5 小时前
HarmonyOS NEXT 应用开发练习:AI智能语音播报
人工智能·harmonyos
JAMES费7 小时前
《Hands on Large Language Models》(深入浅出大型语言模型)实战书探秘
人工智能·语言模型·自然语言处理
MichaelIp7 小时前
LLM大语言模型中RAG切片阶段改进策略
人工智能·python·语言模型·自然语言处理·chatgpt·embedding·word2vec
XianxinMao7 小时前
MemGPT:赋能大型语言模型的自我记忆管理
人工智能·语言模型