三、计算机视觉_08YOLO目标检测

0、前言

YOLO作为目前CV领域的扛把子,分类、检测等任务样样精通,本文将基于两个小案例,用YOLO做检测任务,看看效果如何

1、对图片内容做检测

假设我有一张名为picture.jpeg的图片,其内容如下

我将图片和代码放到了同级目录

代码如下:

复制代码
from ultralytics import YOLO
import cv2
import os

# 解决OMP问题
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"

# 加载模型
model = YOLO("yolo11n.pt")

# 读取图片(这里要写图片的路径和名称)
image = cv2.imread("picture.jpeg")

# 预测
results = model(image)

# 绘制预测结果
img = results[0].plot()

from matplotlib import pyplot as plt
import matplotlib
matplotlib.use('TkAgg')
# 显示图像(BGR转RGB)
# OpenCV默认使用BGR颜色顺序,matplotlib默认使用RGB颜色顺序,所以需要先进行转换,然后才能正常显示
plt.imshow(X=img[:, :, ::-1])
plt.show()

运行结果:(检测出了图片中的目标物,并对边框线、标签以及置信度做了标注)

2、对视频内容做检测

2.1 本地视频

假设我有一段视频文件(bwgqmy.mp4),我需要对视频中的内容进行检测

我将视频文件和代码放到了同级目录

代码如下:

PS:其实视频检测和上面的图片检测一样,是将视频拆分成一帧一帧的图片来做检测,连起来就是视频效果

复制代码
from ultralytics import YOLO
import cv2

# 加载YOLO模型
model = YOLO("yolo11n.pt")

# 打开视频(填写自己电脑上想要检测的视频路径和名称即可)
cap = cv2.VideoCapture("bwgqmy.mp4")

while cap.isOpened():
    # read方法用于尝试读取一帧图像,并返回两个值:
    # (1)status(布尔值,表示是否成功读取帧)
    # (2)frame(读取到的帧图像)
    status, frame = cap.read()

    # 如果读取失败,则跳出循环
    if not status:
        print("error")
        break

    # 如果视频太大了,则缩小尺寸
    # height, width = frame.shape[:2]
    # new_width = width // 2
    # new_height = height // 2
    # frame = cv2.resize(frame, (new_width, new_height))

    # 使用YOLO模型检测物体
    results = model(frame)
    # 绘制预测结果
    img = results[0].plot()

    # 显示图像(循环显示预测结果的图像,就相当于视频效果)
    cv2.imshow("demo", img)

    # 如果按下的是ESC键(ASCII码为27),则跳出循环
    if cv2.waitKey(delay=1000 // 24) == 27:
        break

# 释放资源
cap.release()
cv2.destroyAllWindows()

运行结果:(检测出了视频中的目标物,并对边框线、标签以及置信度做了标注)

2.2 摄像头

假设我需要对我电脑摄像头拍摄到的内容进行检测

代码如下:

PS:其实和视频检测一样,是将摄像头拍到的内容拆分成一帧一帧的图片来做检测

复制代码
from ultralytics import YOLO
import cv2

# 加载YOLO模型
model = YOLO("yolo11n.pt")

# 调起电脑的第0个摄像头
cap = cv2.VideoCapture(0)

while cap.isOpened():
    # read方法用于尝试读取一帧图像,并返回两个值:
    # (1)status(布尔值,表示是否成功读取帧)
    # (2)frame(读取到的帧图像)
    status, frame = cap.read()

    # 如果读取失败,则跳出循环
    if not status:
        print("error")
        break

    # 如果显示区域太大了,则缩小尺寸
    # height, width = frame.shape[:2]
    # new_width = width // 2
    # new_height = height // 2
    # frame = cv2.resize(frame, (new_width, new_height))

    # 使用YOLO模型检测物体
    results = model(frame)
    # 绘制预测结果
    img = results[0].plot()

    # 显示图像(循环显示预测结果的图像,就相当于视频效果)
    cv2.imshow("demo", img)

    # 如果按下的是ESC键(ASCII码为27),则跳出循环
    if cv2.waitKey(delay=1000 // 24) == 27:
        break

# 释放资源
cap.release()
cv2.destroyAllWindows()

运行结果:(检测出了摄像头中的目标物,并对边框线、标签以及置信度做了标注)

相关推荐
CoovallyAIHub4 分钟前
中科大DSAI Lab团队多篇论文入选ICCV 2025,推动三维视觉与泛化感知技术突破
深度学习·算法·计算机视觉
DevUI团队6 分钟前
🚀 MateChat V1.8.0 震撼发布!对话卡片可视化升级,对话体验全面进化~
前端·vue.js·人工智能
聚客AI9 分钟前
🎉7.6倍训练加速与24倍吞吐提升:两项核心技术背后的大模型推理优化全景图
人工智能·llm·掘金·日新计划
黎燃19 分钟前
当 YOLO 遇见编剧:用自然语言生成技术把“目标检测”写成“目标剧情”
人工智能
算家计算20 分钟前
AI教母李飞飞团队发布最新空间智能模型!一张图生成无限3D世界,元宇宙越来越近了
人工智能·资讯
掘金一周23 分钟前
Flutter Riverpod 3.0 发布,大规模重构下的全新状态管理框架 | 掘金一周 9.18
前端·人工智能·后端
CoovallyAIHub39 分钟前
开源的消逝与新生:从 TensorFlow 的落幕到开源生态的蜕变
pytorch·深度学习·llm
用户5191495848451 小时前
C#记录类型与集合的深度解析:从默认实现到自定义比较器
人工智能·aigc
IT_陈寒4 小时前
React 18实战:7个被低估的Hooks技巧让你的开发效率提升50%
前端·人工智能·后端
逛逛GitHub5 小时前
飞书多维表“独立”了!功能强大的超出想象。
人工智能·github·产品