【大数据学习 | Spark-Core】Spark中的join原理

join是两个结果集之间的链接,需要进行数据的匹配。

演示一下join是否存在shuffle。

1. 如果两个rdd没有分区器,分区个数一致

,会发生shuffle。但分区数量不变。

Scala 复制代码
scala> val arr = Array(("zhangsan",300),("lisi",400),("wangwu",350),("zhaosi",450))
arr: Array[(String, Int)] = Array((zhangsan,300), (lisi,400), (wangwu,350), (zhaosi,450))

scala> val arr1 = Array(("zhangsan",22),("lisi",24),("wangwu",30),("guangkun",5))
arr1: Array[(String, Int)] = Array((zhangsan,22), (lisi,24), (wangwu,30), (guangkun,5))

scala> sc.makeRDD(arr,3)
res116: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[108] at makeRDD at <console>:27

scala> sc.makeRDD(arr1,3)
res117: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[109] at makeRDD at <console>:27

scala> res116 join res117
res118: org.apache.spark.rdd.RDD[(String, (Int, Int))] = MapPartitionsRDD[112] at join at <console>:28

scala> res118.collect
res119: Array[(String, (Int, Int))] = Array((zhangsan,(300,22)), (wangwu,(350,30)), (lisi,(400,24)))

2. 如果分区个数不一致,有shuffle,且产生的rdd的分区个数以多的为主。

3. 如果分区个数一样并且分区器一样,那么是没有shuffle的

Scala 复制代码
scala> sc.makeRDD(arr,3)
res128: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[118] at makeRDD at <console>:27

scala> sc.makeRDD(arr1,3)
res129: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[119] at makeRDD at <console>:27

scala> res128.reduceByKey(_+_)
res130: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[120] at reduceByKey at <console>:26

scala> res129.reduceByKey(_+_)
res131: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[121] at reduceByKey at <console>:26

scala> res130 join res131
res132: org.apache.spark.rdd.RDD[(String, (Int, Int))] = MapPartitionsRDD[124] at join at <console>:28

scala> res132.collect
res133: Array[(String, (Int, Int))] = Array((zhangsan,(300,22)), (wangwu,(350,30)), (lisi,(400,24)))

scala> res132.partitions.size
res134: Int = 3

4. 都存在分区器但是分区个数不同,也会存在shuffle

Scala 复制代码
scala> val arr = Array(("zhangsan",300),("lisi",400),("wangwu",350),("zhaosi",450))
arr: Array[(String, Int)] = Array((zhangsan,300), (lisi,400), (wangwu,350), (zhaosi,450))

scala>  val arr1 = Array(("zhangsan",22),("lisi",24),("wangwu",30),("guangkun",5))
arr1: Array[(String, Int)] = Array((zhangsan,22), (lisi,24), (wangwu,30), (guangkun,5))

scala> sc.makeRDD(arr,3)
res0: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[0] at makeRDD at <console>:27

scala> sc.makeRDD(arr1,4)
res1: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[1] at makeRDD at <console>:27

scala> res0.reduceByKey(_+_)
res2: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[2] at reduceByKey at <console>:26

scala> res1.reduceByKey(_+_)
res3: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[3] at reduceByKey at <console>:26

scala> res2 join res3
res4: org.apache.spark.rdd.RDD[(String, (Int, Int))] = MapPartitionsRDD[6] at join at <console>:28

scala> res4.collect
res5: Array[(String, (Int, Int))] = Array((zhangsan,(300,22)), (wangwu,(350,30)), (lisi,(400,24)))

scala> res4.partitions.size
res6: Int = 4

这里为啥stage3里reduceByKey和join过程是连在一起的,因为分区多的RDD是不需要进行shuffle的,数据该在哪个分区就在哪个分区,反而是分区少的RDD要进行join,要进行数据的打散。

分区以多的为主。

5. 一个带有分区器一个没有分区器,那么以带有分区器的rdd分区数量为主,并且存在shuffle

Scala 复制代码
scala> arr
res7: Array[(String, Int)] = Array((zhangsan,300), (lisi,400), (wangwu,350), (zhaosi,450))

scala> arr1
res8: Array[(String, Int)] = Array((zhangsan,22), (lisi,24), (wangwu,30), (guangkun,5))

scala> sc.makeRDD(arr,3)
res9: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[7] at makeRDD at <console>:27

scala> sc.makeRDD(arr,4)
res10: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[8] at makeRDD at <console>:27

scala> res9.reduceByKey(_+_)
res11: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[9] at reduceByKey at <console>:26

scala> res10 join res11
res12: org.apache.spark.rdd.RDD[(String, (Int, Int))] = MapPartitionsRDD[12] at join at <console>:28

scala> res12.partitions.size
res13: Int = 3

scala> res12.collect
res14: Array[(String, (Int, Int))] = Array((zhangsan,(300,300)), (wangwu,(350,350)), (lisi,(400,400)), (zhaosi,(450,450)))

同理,stage6的reduceByKey过程和join过程是连在一起的,是因为有分区器的RDD并不需要进行shuffle操作,原来的数据该在哪在哪,而没有分区器的RDD要进行join要进行数据的打散,有shuffle过程,所以有stage4到stage6的连线。

相关推荐
T06205142 小时前
【复刻】数字化转型是否赋能企业新质生产力发展?(2015-2023年)
大数据
qiquandongkh3 小时前
期权懂|深度虚值期权合约有哪些特性?
大数据·人工智能·区块链
lovelin+v175030409663 小时前
2024年API接口发展趋势:智能化、自动化引领电商数据流通
大数据·人工智能·爬虫·数据分析·api
一二小选手3 小时前
【Redis】万字整理 Redis 非关系型数据库的安装与操作
java·数据库·redis
m0_748255264 小时前
Redis四种模式在Spring Boot框架下的配置
spring boot·redis·bootstrap
B站计算机毕业设计超人4 小时前
计算机毕业设计Hadoop+Spark美团美食推荐系统 美团餐厅推荐系统 美团推荐系统 美食价格预测 美团爬虫 美食数据分析 美食可视化大屏
大数据·hadoop·python·机器学习·课程设计·数据可视化·推荐算法
阿正的梦工坊5 小时前
把Huggingface下载的arrow数据集转化为json格式
json
轻风细雨5 小时前
hive-sql 计算每年在校生人数
hive·hadoop·sql
火眼99885 小时前
一篇文章了解 Kafka
大数据·分布式·kafka
栀寒老醑6 小时前
Zabbix企业级分布式监控系统
服务器·网络·数据库·redis·mysql·云计算·zabbix