基于图像形态学处理的移动物体目标跟踪和质心提取matlab仿真,带GUI界面

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

(完整程序运行后无水印)

2.算法运行软件版本

matlab2022a

3.部分核心程序

(完整版代码包含详细中文注释和操作步骤视频)

....................................................................
    axes(handles.axes1);
    imshow(I2);   
    hold on
%     ylabel('0 100 200 300 400');
    xlim([0,400]);
    ylim([0,400]);
%     set(gca,'YDir','reverse')
    axis on
    hold on
    text(Xc(kk)-50,Yc(kk)+50,['(X,Y)=',num2str(Xc(kk)),',',num2str(Yc(kk))],'Color',[1,1,1]);
    hold off
    
    I2_set{kk} = I2;
    
    axes(handles.axes2);
    plot(Xr,Yr,'r-o');
    axis([0,C,0,R]);
    axis square
 
    axes(handles.axes3);
    plot([0:kk-1],smooth(V,8),'b-o');
    axis([0,length(files)-1,0,2000]);
    xlabel('time (s)');
    ylabel('移动速度um/s');
    axis square
    
    axes(handles.axes4);
    plot([0:kk-1],smooth(angles,8),'g-o');
    axis([0,length(files)-1,-180,180]);
    xlabel('time (s)');
    ylabel('移动方向');
    axis square
    
    
    pause(0.1);
end


% --- Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton3 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
parameter;

times = [1:length(files)]';
data1 = [Xr',Yr'];
data2 = [V'];
data3 = [angles'];
%构建数据组
data   = [times,data1,data2,data3];
[m, n] = size(data);   
data_cell = mat2cell(data, ones(m,1), ones(n,1));

title  = {'Frame','Coordinate x','Coordinate y','Speed','Angle'};                          

result = [title;data_cell];                                           

NAME   = NAME+1;
%保存到excel中
s      = xlswrite(['Save',num2str(NAME),'.xls'], result);  
msgbox('Save Success');
009_013m

4.算法理论概述

在计算机视觉领域,移动物体的目标跟踪和质心提取是重要的研究内容,具有广泛的应用,如智能监控、自动驾驶、人机交互等。图像形态学处理作为一种强大的图像处理工具,能够有效地对图像中的物体形状、结构等信息进行分析和处理,在移动物体目标跟踪和质心提取中发挥着关键作用。

通过对多帧图像的像素值求平均,得到背景图像的估计。中值法是取N帧图像中对应像素值的中值作为背景模型的像素值。高斯混合模型则假设每个像素点的颜色值是由多个高斯分布混合而成,通过学习这些高斯分布的参数来构建背景模型。

检测方法可能会受到光照变化、阴影等因素的影响,产生误检测。为了提高目标检测的准确性,可以结合图像形态学处理。例如,对差异图像先进行开运算,去除噪声和小的干扰区域,再进行闭运算,填充目标物体内部的空洞和连接断裂部分,然后进行阈值处理,得到更准确的目标检测结果。

其中n是颜色直方图的 bins 数量。通过在当前帧中搜索使得相似性 最大的区域作为目标物体在当前帧的位置。在搜索过程中,可以利用图像形态学处理对搜索区域进行限制和优化。例如,根据上一帧目标区域的形状和大小,使用相应的结构元素进行膨胀操作,扩大搜索范围,然后在膨胀后的区域内进行目标搜索,提高跟踪的鲁棒性。

5.算法完整程序工程

OOOOO

OOO

O

相关推荐
许乌有3 小时前
matlab基础使用
开发语言·matlab
通信仿真实验室6 小时前
(73)脉冲幅度调制PAM调制解调通信系统的MATLAB仿真
matlab·信号处理·通信原理·调制解调·通信信号·通信仿真
八年。。6 小时前
MATLAB 中有关figure图表绘制函数设计(论文中常用)
开发语言·笔记·学习·matlab
相醉为友6 小时前
002 MATLAB语言基础
开发语言·matlab
subject625Ruben10 小时前
代码美学:MATLAB制作渐变色
开发语言·matlab
巴依老爷coder11 小时前
YOLOX的正负样本分配问题
人工智能·yolo·计算机视觉·目标跟踪
机器学习之心11 小时前
异常检测 | 高斯分布拟合算法异常数据检测(Matlab)
算法·数学建模·matlab·异常数据检测
猪猪虾的业余生活1 天前
matlab实现,数据曲线毛刺光滑
开发语言·matlab
MATLAB代码顾问1 天前
MATLAB实现多种群遗传算法(multiple population GA,MPGA)
开发语言·matlab