基于图像形态学处理的移动物体目标跟踪和质心提取matlab仿真,带GUI界面

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

(完整程序运行后无水印)

2.算法运行软件版本

matlab2022a

3.部分核心程序

(完整版代码包含详细中文注释和操作步骤视频)

复制代码
....................................................................
    axes(handles.axes1);
    imshow(I2);   
    hold on
%     ylabel('0 100 200 300 400');
    xlim([0,400]);
    ylim([0,400]);
%     set(gca,'YDir','reverse')
    axis on
    hold on
    text(Xc(kk)-50,Yc(kk)+50,['(X,Y)=',num2str(Xc(kk)),',',num2str(Yc(kk))],'Color',[1,1,1]);
    hold off
    
    I2_set{kk} = I2;
    
    axes(handles.axes2);
    plot(Xr,Yr,'r-o');
    axis([0,C,0,R]);
    axis square
 
    axes(handles.axes3);
    plot([0:kk-1],smooth(V,8),'b-o');
    axis([0,length(files)-1,0,2000]);
    xlabel('time (s)');
    ylabel('移动速度um/s');
    axis square
    
    axes(handles.axes4);
    plot([0:kk-1],smooth(angles,8),'g-o');
    axis([0,length(files)-1,-180,180]);
    xlabel('time (s)');
    ylabel('移动方向');
    axis square
    
    
    pause(0.1);
end


% --- Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton3 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
parameter;

times = [1:length(files)]';
data1 = [Xr',Yr'];
data2 = [V'];
data3 = [angles'];
%构建数据组
data   = [times,data1,data2,data3];
[m, n] = size(data);   
data_cell = mat2cell(data, ones(m,1), ones(n,1));

title  = {'Frame','Coordinate x','Coordinate y','Speed','Angle'};                          

result = [title;data_cell];                                           

NAME   = NAME+1;
%保存到excel中
s      = xlswrite(['Save',num2str(NAME),'.xls'], result);  
msgbox('Save Success');
009_013m

4.算法理论概述

在计算机视觉领域,移动物体的目标跟踪和质心提取是重要的研究内容,具有广泛的应用,如智能监控、自动驾驶、人机交互等。图像形态学处理作为一种强大的图像处理工具,能够有效地对图像中的物体形状、结构等信息进行分析和处理,在移动物体目标跟踪和质心提取中发挥着关键作用。

通过对多帧图像的像素值求平均,得到背景图像的估计。中值法是取N帧图像中对应像素值的中值作为背景模型的像素值。高斯混合模型则假设每个像素点的颜色值是由多个高斯分布混合而成,通过学习这些高斯分布的参数来构建背景模型。

检测方法可能会受到光照变化、阴影等因素的影响,产生误检测。为了提高目标检测的准确性,可以结合图像形态学处理。例如,对差异图像先进行开运算,去除噪声和小的干扰区域,再进行闭运算,填充目标物体内部的空洞和连接断裂部分,然后进行阈值处理,得到更准确的目标检测结果。

其中n是颜色直方图的 bins 数量。通过在当前帧中搜索使得相似性 最大的区域作为目标物体在当前帧的位置。在搜索过程中,可以利用图像形态学处理对搜索区域进行限制和优化。例如,根据上一帧目标区域的形状和大小,使用相应的结构元素进行膨胀操作,扩大搜索范围,然后在膨胀后的区域内进行目标搜索,提高跟踪的鲁棒性。

5.算法完整程序工程

OOOOO

OOO

O

相关推荐
guygg8813 小时前
两轮车MATLAB仿真程序的实现方法
开发语言·matlab
cici1587415 小时前
基于GPRMAX的地下管线正演模拟与MATLAB实现
开发语言·算法·matlab
bubiyoushang88819 小时前
MATLAB空间域图像增强技术详解与实现
图像处理·计算机视觉·matlab
春日见1 天前
做一个项目的完整流程应该是什么样
linux·人工智能·数码相机·计算机视觉·matlab
ghie90901 天前
基于SVM的图像分割MATLAB实现实例
人工智能·支持向量机·matlab
wuk9981 天前
基于MATLAB的谱减法语音去噪及信噪比评估
开发语言·matlab·语音识别
Evand J1 天前
【2026课题推荐】复杂环境下,无人车协同定位与路径规划算法(附MATLAB例程演示)
开发语言·算法·matlab
rit84324991 天前
水声信道MATLAB仿真程序
开发语言·matlab
春日见1 天前
强化学习第一讲:强化学习是什么,强化学习分类
开发语言·jvm·人工智能·python·学习·matlab·强化学习
hoiii1871 天前
基于MATLAB/Simulink使用M函数实现无刷直流电机(BLDCM)双闭环控制系统
开发语言·matlab