大模型开发中LCEL与LLMChain响应度的对比

管道连接

python 复制代码
import time

from langchain_community.chat_models import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate

t1 = time.time()
llm = ChatOpenAI(
)


resp_prompt_path = 'response_prompt.md'
prompt = PromptTemplate.from_file(resp_prompt_path,encoding='utf-8')
prompt = prompt.partial(
            query="现在客运量是多少?",
            result="### rt_schema:['客运量'], rt_result:[888461]",
            reply_nodata="昨日数据未完成结算, 请12点以后查看。",
            today="2024-11-27")

chain = prompt | llm | StrOutputParser()

print(chain.invoke({"query":"现在客运量是多少?","result":"### rt_schema:['客运量'], rt_result:[888461]","today":"2024-11-27"}))

print(time.time()-t1)

其中,要求prompt类型为PromptTemplate类型。

LLMChain

python 复制代码
import time

from langchain.chains.llm import LLMChain
from langchain.memory import ConversationBufferMemory
from langchain_community.chat_models import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate, \
    SystemMessagePromptTemplate, MessagesPlaceholder

resp_prompt_path = 'response_prompt.md'
prompt = PromptTemplate.from_file(resp_prompt_path,encoding='utf-8')
prompt = prompt.partial(
            query="现在客运量是多少?",
            result="### rt_schema:['客运量'], rt_result:[888461]",
            reply_nodata="昨日数据未完成结算, 请12点以后查看。",
            today="2024-11-27")

prompt_ = prompt.format()


t2 = time.time()
llm = ChatOpenAI(
)
prompt = ChatPromptTemplate(
    messages=[
        SystemMessagePromptTemplate.from_template(
            "You are a nice chatbot having a conversation with a human."
        ),
        MessagesPlaceholder(variable_name="chat_history"),
        HumanMessagePromptTemplate.from_template(prompt_)
    ]
)

memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
conversation = LLMChain(
    llm=llm,
    prompt=prompt,
    verbose=True,
    memory=memory
)

resp = conversation.invoke({"data":str({"query":"现在客运量是多少?","result":"### rt_schema:['客运量'], rt_result:[888461]","today":"2024-11-27"})})
resp_str = StrOutputParser.parse(self='',text=resp.get('text'))
print(resp_str)

print(time.time()-t2)

其中,HumanMessagePromptTemplate.from_template()要求参数是str类型,需要将prompt通过prompt.format()转成str,进入LLMChain后prompt要求是ChatPromptTemplate类型的。另外,该模型只能接收一个参数,如果出现多个参数,需要转换。

目前在大模型开发中,遇到响应度体验的问题,本想通过拆掉pipeline提升速度,但是最终发现效果不明显。就保留langchain的LCEL模式。

相关推荐
聚客AI15 分钟前
系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
人工智能·pytorch·python·rnn·神经网络·机器学习·自然语言处理
狮子也疯狂21 分钟前
基于Python的气象数据分析及可视化研究
python·信息可视化·数据分析
蓝婷儿1 小时前
6个月Python学习计划 Day 18 - 项目实战 · 学生成绩管理系统(OOP版)
开发语言·python·学习
HINOTOR_1 小时前
DAY 25 异常处理
开发语言·python
yorushika_1 小时前
python打卡训练营打卡记录day49
开发语言·python·tensorboard·cbam
qq_189370492 小时前
Jupyter notebook的文章结构目录查看方式和汉化方法
python·jupyter
晨曦5432102 小时前
将 Jupyter Notebook 的默认存储路径从 C 盘迁移到 D 盘,可以通过以下步骤实现:
ide·python·jupyter
晨曦5432102 小时前
JupyterNotebook全能指南:从入门到精通
python
哆啦A梦的口袋呀2 小时前
基于Python学习《Head First设计模式》第八章 模板方法模式
python·学习·设计模式
嘟嘟实验室2 小时前
SAM2Long本地部署,视频分割处理,绿幕抠像,超长视频支持
windows·python·音视频