大模型开发中LCEL与LLMChain响应度的对比

管道连接

python 复制代码
import time

from langchain_community.chat_models import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate

t1 = time.time()
llm = ChatOpenAI(
)


resp_prompt_path = 'response_prompt.md'
prompt = PromptTemplate.from_file(resp_prompt_path,encoding='utf-8')
prompt = prompt.partial(
            query="现在客运量是多少?",
            result="### rt_schema:['客运量'], rt_result:[888461]",
            reply_nodata="昨日数据未完成结算, 请12点以后查看。",
            today="2024-11-27")

chain = prompt | llm | StrOutputParser()

print(chain.invoke({"query":"现在客运量是多少?","result":"### rt_schema:['客运量'], rt_result:[888461]","today":"2024-11-27"}))

print(time.time()-t1)

其中,要求prompt类型为PromptTemplate类型。

LLMChain

python 复制代码
import time

from langchain.chains.llm import LLMChain
from langchain.memory import ConversationBufferMemory
from langchain_community.chat_models import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate, \
    SystemMessagePromptTemplate, MessagesPlaceholder

resp_prompt_path = 'response_prompt.md'
prompt = PromptTemplate.from_file(resp_prompt_path,encoding='utf-8')
prompt = prompt.partial(
            query="现在客运量是多少?",
            result="### rt_schema:['客运量'], rt_result:[888461]",
            reply_nodata="昨日数据未完成结算, 请12点以后查看。",
            today="2024-11-27")

prompt_ = prompt.format()


t2 = time.time()
llm = ChatOpenAI(
)
prompt = ChatPromptTemplate(
    messages=[
        SystemMessagePromptTemplate.from_template(
            "You are a nice chatbot having a conversation with a human."
        ),
        MessagesPlaceholder(variable_name="chat_history"),
        HumanMessagePromptTemplate.from_template(prompt_)
    ]
)

memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
conversation = LLMChain(
    llm=llm,
    prompt=prompt,
    verbose=True,
    memory=memory
)

resp = conversation.invoke({"data":str({"query":"现在客运量是多少?","result":"### rt_schema:['客运量'], rt_result:[888461]","today":"2024-11-27"})})
resp_str = StrOutputParser.parse(self='',text=resp.get('text'))
print(resp_str)

print(time.time()-t2)

其中,HumanMessagePromptTemplate.from_template()要求参数是str类型,需要将prompt通过prompt.format()转成str,进入LLMChain后prompt要求是ChatPromptTemplate类型的。另外,该模型只能接收一个参数,如果出现多个参数,需要转换。

目前在大模型开发中,遇到响应度体验的问题,本想通过拆掉pipeline提升速度,但是最终发现效果不明显。就保留langchain的LCEL模式。

相关推荐
逢生博客24 分钟前
使用 Python 项目管理工具 uv 快速创建 MCP 服务(Cherry Studio、Trae 添加 MCP 服务)
python·sqlite·uv·deepseek·trae·cherry studio·mcp服务
堕落似梦30 分钟前
Pydantic增强SQLALchemy序列化(FastAPI直接输出SQLALchemy查询集)
python
生信碱移1 小时前
大语言模型时代,单细胞注释也需要集思广益(mLLMCelltype)
人工智能·经验分享·深度学习·语言模型·自然语言处理·数据挖掘·数据可视化
坐吃山猪1 小时前
Python-Agent调用多个Server-FastAPI版本
开发语言·python·fastapi
Bruce-li__2 小时前
使用Django REST Framework快速开发API接口
python·django·sqlite
小兜全糖(xdqt)2 小时前
python 脚本引用django中的数据库model
python·django
Arenaschi2 小时前
SQLite 是什么?
开发语言·网络·python·网络协议·tcp/ip
纪元A梦2 小时前
华为OD机试真题——推荐多样性(2025A卷:200分)Java/python/JavaScript/C++/C语言/GO六种最佳实现
java·javascript·c++·python·华为od·go·华为od机试题
硅谷秋水2 小时前
通过模仿学习实现机器人灵巧操作:综述(上)
人工智能·深度学习·机器学习·计算机视觉·语言模型·机器人
仙人掌_lz2 小时前
人工智能与机器学习:Python从零实现性回归模型
人工智能·python·机器学习·线性回归