大模型开发中LCEL与LLMChain响应度的对比

管道连接

python 复制代码
import time

from langchain_community.chat_models import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate

t1 = time.time()
llm = ChatOpenAI(
)


resp_prompt_path = 'response_prompt.md'
prompt = PromptTemplate.from_file(resp_prompt_path,encoding='utf-8')
prompt = prompt.partial(
            query="现在客运量是多少?",
            result="### rt_schema:['客运量'], rt_result:[888461]",
            reply_nodata="昨日数据未完成结算, 请12点以后查看。",
            today="2024-11-27")

chain = prompt | llm | StrOutputParser()

print(chain.invoke({"query":"现在客运量是多少?","result":"### rt_schema:['客运量'], rt_result:[888461]","today":"2024-11-27"}))

print(time.time()-t1)

其中,要求prompt类型为PromptTemplate类型。

LLMChain

python 复制代码
import time

from langchain.chains.llm import LLMChain
from langchain.memory import ConversationBufferMemory
from langchain_community.chat_models import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate, \
    SystemMessagePromptTemplate, MessagesPlaceholder

resp_prompt_path = 'response_prompt.md'
prompt = PromptTemplate.from_file(resp_prompt_path,encoding='utf-8')
prompt = prompt.partial(
            query="现在客运量是多少?",
            result="### rt_schema:['客运量'], rt_result:[888461]",
            reply_nodata="昨日数据未完成结算, 请12点以后查看。",
            today="2024-11-27")

prompt_ = prompt.format()


t2 = time.time()
llm = ChatOpenAI(
)
prompt = ChatPromptTemplate(
    messages=[
        SystemMessagePromptTemplate.from_template(
            "You are a nice chatbot having a conversation with a human."
        ),
        MessagesPlaceholder(variable_name="chat_history"),
        HumanMessagePromptTemplate.from_template(prompt_)
    ]
)

memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
conversation = LLMChain(
    llm=llm,
    prompt=prompt,
    verbose=True,
    memory=memory
)

resp = conversation.invoke({"data":str({"query":"现在客运量是多少?","result":"### rt_schema:['客运量'], rt_result:[888461]","today":"2024-11-27"})})
resp_str = StrOutputParser.parse(self='',text=resp.get('text'))
print(resp_str)

print(time.time()-t2)

其中,HumanMessagePromptTemplate.from_template()要求参数是str类型,需要将prompt通过prompt.format()转成str,进入LLMChain后prompt要求是ChatPromptTemplate类型的。另外,该模型只能接收一个参数,如果出现多个参数,需要转换。

目前在大模型开发中,遇到响应度体验的问题,本想通过拆掉pipeline提升速度,但是最终发现效果不明显。就保留langchain的LCEL模式。

相关推荐
火白学安全5 分钟前
《Python红队攻防零基础脚本编写:进阶篇(一)》
开发语言·python·安全·web安全·网络安全·系统安全
FreeCode16 分钟前
LangGraph1.0智能体开发:运行时系统
python·langchain·agent
青瓷程序设计28 分钟前
植物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
习习.y1 小时前
关于python中的面向对象
开发语言·python
hmbbcsm1 小时前
练习python题目小记(六)
开发语言·python
wow_DG1 小时前
【Python✨】VS Code 秒开 Python 类型检查:一招 mypy + settings.json 让你的 Bug 原地现形!
python·json·bug
Aspect of twilight1 小时前
LeetCode华为大模型岗刷题
python·leetcode·华为·力扣·算法题
人机与认知实验室1 小时前
国内主流大语言模型之比较
人工智能·语言模型·自然语言处理
空影星2 小时前
高效追踪电脑使用时间,Tockler助你优化时间管理
python·django·flask
LiLiYuan.2 小时前
【Lombok库常用注解】
java·开发语言·python