自动化运维(k8s)之微服务信息自动抓取:namespaceName、deploymentName等全解析

前言:公司云原生k8s二开工程师发了一串通用性命令用来查询以下数值,我想着能不能将这命令写成一个自动化脚本。
起初设计的 版本一:开头加一条环境变量,执行脚本后,提示输入:需要查询的命名空间,输出信息追加到以当前年月日时来命名自动生成的txt文件;
版本二:自动生成中文排头标题,并生成csv文件,这样就不用手动将txt转化成excl表了;
版本三:发现生成csv文件,其中 副本数 和 容器镜像信息区分不开,想着用在文本格式处理更有优势的python来写,最终成功了。

需要注意的是我们这边k8s容器平台是二开版,然后由于我目前试验的命名空间业务的特殊性,标题里通用的 就绪探针 和 存活探针,采集的参数为:资源限制 CPU 和 资源限制 Memory的,儿你使用时,具体的参数需要根据你的当前deployments.apps配置参数来判定。

查询数值:

复制代码
namespaceName:部署所在的命名空间
deploymentName:部署的名称
replicas:部署的副本数量
image:容器的镜像
resourcesRequest:容器请求的资源
resourcesLimits:容器资源的限制
readinessProbe:就绪探针的配置
livenessProbe:存活探针的配置
skyworkingNamespace:环境变量 SW_AGENT_NAMESPACE 的值
lopLogsApplog:环境变量 lop_logs_applog 的值

通用命令:
kubectl get deployments.apps -n 需要查询的命名空间 -o jsonpath='{range .items[*]} {"\n\n"} namespaceName={.metadata.namespace}{"\t"} deploymentName={.metadata.name} {"\t"} replicas={.spec.replicas} {range .spec.template.spec.containers[*]} image={.image} {"\t"} resourcesRequest={.resources.requests} {"\t"} resourcesLimits={.resources.limits} {"\t"} readinessProbe={.readinessProbe} {"\t"} livenessProbe={.livenessProbe} {"\t"}{end} skyworkingNamespace={.spec.template.spec.containers[0].env[?(@.name=="SW_AGENT_NAMESPACE")].*} {"\t"} lopLogsApplog={.spec.template.spec.containers[0].env[?(@.name=="lop_logs_applog")].*} {end} {"\n"}'

版本一:shell脚本

复制代码
#!/bin/bash

# 设置环境变量
export ENV_VARIABLE="SomeValue"

read -p "请输入需要查询的命名空间: " namespace

# 获取日期和时间并格式化作为文件名
current_date=$(date +%Y%m%d%H)
filename="${current_date}.txt"

# 执行 kubectl 命令并将结果追加到文件中
kubectl get deployments.apps -n "$namespace" -o jsonpath='{range.items[*]} {"\n\n"} namespaceName={.metadata.namespace}{"\t"} deploymentName={.metadata.name} {"\t"} replicas={.spec.replicas} {range.spec.template.spec.containers[*]} image={.image} {"\t"} resourcesRequest={.resources.requests} {"\t"} resourcesLimits={.resources.limits} {"\t"} readinessProbe={.readinessProbe} {"\t"} livenessProbe={.livenessProbe} {"\t"}{end} skyworkingNamespace={.spec.template.spec.containers[0].env[?(@.name=="SW_AGENT_NAMESPACE")].*} {"\t"} lopLogsApplog={.spec.template.spec.containers[0].env[?(@.name=="lop_logs_applog")].*} {end} {"\n"}' >> "$filename"

echo "输出已追加到 $filename 文件中。"

执行结果:

版本二:shell脚本:

复制代码
#!/bin/bash

export ENV_VARIABLE="SomeValue"

read -p "请输入需要查询的命名空间: " namespace

current_date=$(date +%Y%m%d%H)
filename="${current_date}.csv"

# 使用以下命令生成 CSV 格式的输出并追加到文件中
kubectl get deployments.apps -n "$namespace" -o jsonpath='{range.items[*]}{"\n"}'$'\t'"{.metadata.namespace}"$'\t'"{.metadata.name}"$'\t'"{.spec.replicas}"$'\t'"{range.spec.template.spec.containers[*]}{.image}{end}"$'\t'"{range.spec.template.spec.containers[*]}{.resources.requests}{end}"$'\t'"{range.spec.template.spec.containers[*]}{.resources.limits}{end}"$'\t'"{range.spec.template.spec.containers[*]}{.readinessProbe}{end}"$'\t'"{range.spec.template.spec.containers[*]}{.livenessProbe}{end}"$'\t'"{range.spec.template.spec.containers[*]}{.spec.template.spec.containers[0].env[?(@.name==\"SW_AGENT_NAMESPACE\")].value}{end}"$'\t'"{range.spec.template.spec.containers[*]}{.spec.template.spec.containers[0].env[?(@.name==\"lop_logs_applog\")].value}{end}" >> "$filename"

echo "输出已追加到 $filename 文件中。"

执行结果:
版本三:
改了很多版,这里就直接展示成功吧

通用版-py脚本:

复制代码
import subprocess
import datetime

# 获取用户输入的命名空间
namespace = input("请输入当前需要查询的命名空间: ")

# 获取当前时间并生成文件名
timestamp = datetime.datetime.now().strftime("%Y%m%d%H")
output_file = f"{timestamp}.csv"

# 设置标题行
with open(output_file, 'w') as f:
    f.write("命名空间,名称,副本数,容器镜像,资源请求,资源限制,就绪探针,存活探针,环境变量\n")

# 执行 kubectl 命令并处理结果
command = f"kubectl get deployments.apps -n {namespace} -o json".split()
result = subprocess.check_output(command).decode()

import json
data = json.loads(result)

def format_probe(probe):
    if not probe:
        return "N/A"
    probe_type = ""
    details = ""
    if "httpGet" in probe:
        probe_type = "HTTP GET"
        http_get = probe["httpGet"]
        details = f"{probe_type}: Path: {http_get.get('path', 'N/A')}, Port: {http_get.get('port', 'N/A')}"
    elif "tcpSocket" in probe:
        probe_type = "TCP Socket"
        tcp_socket = probe["tcpSocket"]
        details = f"{probe_type}: Port: {tcp_socket.get('port', 'N/A')}"
    elif "exec" in probe:
        probe_type = "Exec"
        exec_command = probe["exec"]
        details = f"{probe_type}: Command: {' '.join(exec_command)}"
    elif "cpu" in probe and "memory" in probe:
        details = f"Resource: CPU {probe['cpu']}, Memory {probe['memory']}"
    else:
        return "N/A"
    return details

def format_resources(resources):
    if not resources:
        return "N/A"
    cpu = resources.get('cpu', 'N/A')
    memory = resources.get('memory', 'N/A')
    return f"CPU: {cpu}, Memory: {memory}"

with open(output_file, 'a') as f:
    for item in data.get('items', []):
        namespace_name = item['metadata']['namespace']
        deployment_name = item['metadata']['name']
        replicas = item['spec']['replicas']
        images = [container['image'] for container in item['spec']['template']['spec']['containers']]
        image = images[0] if images else "N/A"
        request = format_resources(item['spec']['template']['spec']['containers'][0]['resources']['requests'])
        limit = format_resources(item['spec']['template']['spec']['containers'][0]['resources']['limits'])
        readiness_probe = "N/A"
        if item['spec']['template']['spec']['containers'] and 0 < len(item['spec']['template']['spec']['containers']) and 'readinessProbe' in item['spec']['template']['spec']['containers'][0]:
            readiness_probe = format_probe(item['spec']['template']['spec']['containers'][0]['readinessProbe'])
        liveness_probe = "N/A"
        if item['spec']['template']['spec']['containers'] and 0 < len(item['spec']['template']['spec']['containers']) and 'livenessProbe' in item['spec']['template']['spec']['containers'][0]:
            liveness_probe = format_probe(item['spec']['template']['spec']['containers'][0]['livenessProbe'])
        env_var = "N/A"
        if item['spec']['template']['spec']['containers'] and 'env' in item['spec']['template']['spec']['containers'][0]:
            env_var = next((env['value'] for env in item['spec']['template']['spec']['containers'][0]['env'] if env['name'] == "SW_AGENT_NAMESPACE"), "N/A")
        f.write(f"{namespace_name},{deployment_name},{replicas},{image},{request},{limit},{readiness_probe},{liveness_probe},{env_var}\n")

print(f"查询结果已写入文件:{output_file}")

定制版-py脚本:

复制代码
import subprocess
import datetime

# 获取用户输入的命名空间
namespace = input("请输入当前需要查询的命名空间: ")

# 获取当前时间并生成文件名
timestamp = datetime.datetime.now().strftime("%Y%m%d%H")
output_file = f"{timestamp}.csv"

# 设置标题行
with open(output_file, 'w') as f:
    f.write("命名空间,名称,副本数,容器镜像,资源预留 CPU,资源预留 Memory,资源限制 CPU,资源限制 Memory,环境变量\n")

# 执行 kubectl 命令并处理结果
command = f"kubectl get deployments.apps -n {namespace} -o json".split()
result = subprocess.check_output(command).decode()

import json
data = json.loads(result)

def format_probe(probe):
    if not probe:
        return "N/A"
    probe_type = ""
    details = ""
    if "httpGet" in probe:
        probe_type = "HTTP GET"
        http_get = probe["httpGet"]
        details = f"{probe_type}: Path: {http_get.get('path', 'N/A')}, Port: {http_get.get('port', 'N/A')}"
    elif "tcpSocket" in probe:
        probe_type = "TCP Socket"
        tcp_socket = probe["tcpSocket"]
        details = f"{probe_type}: Port: {tcp_socket.get('port', 'N/A')}"
    elif "exec" in probe:
        probe_type = "Exec"
        exec_command = probe["exec"]
        details = f"{probe_type}: Command: {' '.join(exec_command)}"
    elif "cpu" in probe and "memory" in probe:
        details = f"Resource: CPU {probe['cpu']}, Memory {probe['memory']}"
    else:
        return "N/A"
    return details

def format_resources(resources):
    if not resources:
        return "N/A"
    cpu = resources.get('cpu', 'N/A')
    memory = resources.get('memory', 'N/A')
    return f"CPU: {cpu}, Memory: {memory}"

with open(output_file, 'a') as f:
    for item in data.get('items', []):
        namespace_name = item['metadata']['namespace']
        deployment_name = item['metadata']['name']
        replicas = item['spec']['replicas']
        images = [container['image'] for container in item['spec']['template']['spec']['containers']]
        image = images[0] if images else "N/A"
        request = format_resources(item['spec']['template']['spec']['containers'][0]['resources']['requests'])
        limit = format_resources(item['spec']['template']['spec']['containers'][0]['resources']['limits'])
        readiness_probe = "N/A"
        if item['spec']['template']['spec']['containers'] and 0 < len(item['spec']['template']['spec']['containers']) and 'readinessProbe' in item['spec']['template']['spec']['containers'][0]:
            readiness_probe = format_probe(item['spec']['template']['spec']['containers'][0]['readinessProbe'])
        liveness_probe = "N/A"
        if item['spec']['template']['spec']['containers'] and 0 < len(item['spec']['template']['spec']['containers']) and 'livenessProbe' in item['spec']['template']['spec']['containers'][0]:
            liveness_probe = format_probe(item['spec']['template']['spec']['containers'][0]['livenessProbe'])
        env_var = "N/A"
        if item['spec']['template']['spec']['containers'] and 'env' in item['spec']['template']['spec']['containers'][0]:
            env_var = next((env['value'] for env in item['spec']['template']['spec']['containers'][0]['env'] if env['name'] == "SW_AGENT_NAMESPACE"), "N/A")
        # 按照新的标题格式写入数据
        parts_request = request.split(", ") if request!= "N/A" else ["N/A", "N/A"]
        parts_limit = limit.split(", ") if limit!= "N/A" else ["N/A", "N/A"]
        f.write(f"{namespace_name},{deployment_name},{replicas},{image},{parts_request[0].replace('CPU: ', '')},{parts_request[1].replace('Memory: ', '')},{parts_limit[0].replace('CPU: ', '')},{parts_limit[1].replace('Memory: ', '')},{env_var}\n")

print(f"查询结果已写入文件:{output_file}")

执行:

执行结果:

自动化脚本和输出结果递交上去后,受到公司 高级系统架构师(兼技术专家组云原生高级架构师)、云原生k8s二开工程师以及其他同事和领导的点赞。

相关推荐
玉树临风江流儿6 小时前
Linux驱动开发总结速记
linux·运维·驱动开发
舰长1156 小时前
k8s 持久化存储方案-PVC
云原生·容器·kubernetes
七宝大爷6 小时前
GPU服务器深度解析:H100/H200的“机头”与“模组”架构详解
运维·服务器·架构·h100·h200
南方以南_7 小时前
对比k8s的service和kube-proxy
云原生·容器·kubernetes
A-花开堪折7 小时前
Qemu 嵌入式Linux驱动开发
linux·运维·驱动开发
磊灬泽7 小时前
【Linux驱动开发】PWM子系统-servo
linux·运维·算法
斯普信专业组7 小时前
基于k8s环境的mongodb多副本高可用方案
mongodb·容器·kubernetes
郝学胜-神的一滴8 小时前
Linux系统函数stat和lstat详解
linux·运维·服务器·开发语言·c++·程序人生·软件工程
Mr.亮先生8 小时前
常用、高效、实用的 Linux 服务器监控与运维工具清单
linux·运维·服务器
极客先躯9 小时前
高可用巡检脚本实战:一键掌握服务、网络、VIP、资源状态
运维·网络·金融