<项目代码>YOLOv8 停车场空位识别<目标检测>

YOLOv8是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv8具有更高的检测速度和实时性。

1.数据集介绍

数据集详情可以参考博主写的博客

<数据集>停车场空位识别数据集<目标检测>https://blog.csdn.net/qq_53332949/article/details/141019524

数据集下载链接:

点击下载https://download.csdn.net/download/qq_53332949/89720053?spm=1001.2101.3001.9500

2.YOLOv8模型结构

YOLOv8的结构主要分为三部分:Backbone、Neck和Head。

- Backbone
  • 用于提取输入图像的特征。YOLOv8采用了多种轻量化的卷积模块(如CSP模块)和扩展卷积(Depthwise Separable Convolution),提升了特征提取的速度和效率。
  • 它能够有效地捕获不同尺度和不同特征层次的信息。
- Neck
  • 用于融合多尺度特征,实现对小目标的更好检测。YOLOv8中常用的Neck是PAN(Path Aggregation Network)和FPN(Feature Pyramid Network)的结合,能够更好地传递底层和顶层特征,提高对目标的检测精度。
- Head
  • 负责最终的目标检测和分类任务。YOLOv8的Head包括分类分支和边界框回归分支。分类分支输出每个候选区域的类别概率,边界框回归分支则输出检测框的位置和大小。
  • YOLOv8采用了Anchor-Free的设计,使得模型可以在不需要预设锚框的情况下进行检测,减少了计算复杂度,并提升了检测精度。

YOLOv8模型的整体结构如下图所示:

3.模型训练结果

YOLOv8在训练结束后,可以在**runs**目录下找到训练过程及结果文件,如下图所示:

3.1 map@50指标

3.2 P_curve.png

3.3 R_curve.png

3.4 results.png

3.5 F1_curve

3.6 confusion_matrix

3.7 confusion_matrix_normalized

3.8 验证 batch

标签:

预测结果:

3.9 识别效果图

相关推荐
YangYang9YangYan1 分钟前
中专服装设计专业职业发展指南
大数据·人工智能·数据分析
新智元11 分钟前
AI 科学家登场!12 小时抵人类科学家半年工作量,已有 7 项大成果
人工智能·openai
新智元12 分钟前
PyTorch 之父闪电离职,AI 半壁江山集体致敬!
人工智能·openai
NON-JUDGMENTAL30 分钟前
指令微调(Instruction Tuning)
人工智能·深度学习·机器学习
Funny_AI_LAB33 分钟前
深度解析Andrej Karpathy访谈:关于AI智能体、AGI、强化学习与大模型的十年远见
人工智能·计算机视觉·ai·agi
小兜全糖(xdqt)38 分钟前
python ppt转pdf以及图片提取
python·pdf·powerpoint
互联科技报39 分钟前
AI赋能企业办公:文多多AiPPT以技术创新破解行业痛点
人工智能
番石榴AI43 分钟前
视频转ppt/pdf V2.0版(新增转为可编辑PPT功能)
人工智能·pdf·powerpoint
前端世界1 小时前
用Python打造智能成绩分析系统:从异常处理到断言验证的全流程实战
服务器·数据库·python
yaoxin5211231 小时前
229. Java 集合 - 操作集合中的多个元素(批量操作)
java·开发语言·python