Flume 与 Kafka 整合实战

目录

[一、Kafka 作为 Source【数据进入到kafka中,抽取出来】](#一、Kafka 作为 Source【数据进入到kafka中,抽取出来】)

(一)环境准备与配置文件创建

(二)创建主题

(三)测试步骤

[二、Kafka 作为 Sink数据从别的地方抽取到kafka里面】](#二、Kafka 作为 Sink数据从别的地方抽取到kafka里面】)

(一)编写配置脚本

[(二)创建 topic](#(二)创建 topic)

(三)测试过程

三、应用场景示例

四、总结


在大数据处理的生态系统中,Flume 和 Kafka 都是非常重要的组件。Flume 擅长收集、聚合和传输大量的日志数据等,而 Kafka 则是一个高性能的分布式消息队列,能够处理海量的实时数据。将 Flume 和 Kafka 进行整合,可以构建强大的数据处理管道,实现数据的高效采集、传输和处理。本文将详细介绍 Flume 和 Kafka 整合的两种常见方式:Kafka 作为 Source 和 Kafka 作为 Sink。

一、Kafka 作为 Source【数据进入到kafka中,抽取出来】

(一)环境准备与配置文件创建

在 Flume 的 conf 文件夹下,创建一个名为 kafka - memory - logger.conf 的脚本文件。这里需要注意,在实际操作中可能会遇到错误,例如 kafka 的每一批次的读取数量大于了 channel 的容量。这种情况下的解决方案是要么降低 kafka 的每一批次读取的容量,要么提高 channel 的容量。

https://flume.liyifeng.org/#kafka-source

kafka-memory-logger.conf

bash 复制代码
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

a1.sources.r1.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.r1.batchSize = 100
a1.sources.r1.batchDurationMillis = 2000
a1.sources.r1.kafka.bootstrap.servers = bigdata01:9092,bigdata02:9092,bigdata03:9092
a1.sources.r1.kafka.topics = five
a1.sources.r1.kafka.consumer.group.id = qiaodaohu

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

a1.sinks.k1.type = logger
a1.sinks.k1.maxBytesToLog = 128

(二)创建主题

接着创建一个 topic,名字可以叫做 kafka - flume,当然也可以直接使用以前创建好的主题。

bash 复制代码
kafka-topics.sh --create --topic kafka-flume --bootstrap-server bigdata01:9092 --partitions 3 --replication-factor 1

(三)测试步骤

首先启动一个消息生产者,向 topic 中发送消息。

bash 复制代码
kafka-console-producer.sh --topic kafka-flume --bootstrap-server bigdata01:9092

然后启动 Flume,接收消息并查看 log 日志,这样就可以验证数据是否能够从 Kafka 成功抽取到 Flume 中并进行后续处理。

在flume的flumeconf 文件夹下

bash 复制代码
flume-ng agent -n a1 -c ../conf -f ./kafka-memory-logger.conf -Dflume.root.logger=INFO,console

二、Kafka 作为 Sink数据从别的地方抽取到kafka里面】

(一)编写配置脚本

编写一个名为 flume - kafka - sink.conf 的脚本,内容如下:

bash 复制代码
##a1就是flume agent的名称
## source r1
## channel c1
## sink k1
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = bigdata01
a1.sources.r1.port = 44444

# 修改sink为kafka
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.kafka.bootstrap.servers = bigdata01:9092
a1.sinks.k1.kafka.topic = five
a1.sinks.k1.kafka.producer.acks = 1
a1.sinks.k1.kafka.producer.linger.ms = 1

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

这里的流程是 netcat(模拟数据源)→ memory(内存通道)→ kafka。

(二)创建 topic

使用以下命令创建 topic(flume - kafka):

bash 复制代码
kafka-topics.sh --create --topic flume-kafka --bootstrap-server bigdata01:9092 --partitions 3 --replication-factor 1

(三)测试过程

启动 Flume:

bash 复制代码
flume-ng agent -n a1 -c conf -f $FLUME_HOME/job/flume-kafka-sink.conf -Dflume.root.logger=INFO,console

使用 telnet 命令,向端口发送消息:

bash 复制代码
yum -y install telnet

telnet bigdata01 44444

在窗口不断地发送文本数据,数据就会被抽取到 Kafka 中。

使用消费者获取 Kafka 数据:

bash 复制代码
kafka-console-consumer.sh --topic flume-kafka --bootstrap-server bigdata01:9092 --from-beginning

三、应用场景示例

假定有这样一个场景:Flume 可以抽取不断产生的日志,抽取到的日志数据,发送给 Kafka,Kafka 经过处理,可以展示在页面上,或者进行汇总统计。这样就实现了一定的实时效果,在实际的大数据处理流程中,这种整合方式能够有效地处理海量的实时数据,提高数据处理的效率和可靠性。

四、总结

通过 Flume 和 Kafka 的整合,我们能够构建更加灵活、高效的数据处理架构,满足不同场景下的大数据处理需求,为后续的数据挖掘、分析等提供坚实的数据基础。

相关推荐
zgl_200537794 小时前
ZGLanguage 解析SQL数据血缘 之 Python + Echarts 显示SQL结构图
大数据·数据库·数据仓库·hadoop·sql·代码规范·源代码管理
潘达斯奈基~5 小时前
万字详解Flink基础知识
大数据·flink
zandy10118 小时前
从 Workflow 到 Agent 模式!衡石多智能体协同架构,重新定义智能 BI 底层逻辑
大数据·信息可视化·架构
Elastic 中国社区官方博客8 小时前
Elastic:DevRel 通讯 — 2026 年 1 月
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
萤丰信息8 小时前
从 “钢筋水泥” 到 “数字神经元”:北京 AI 原点社区重构城市进化新逻辑
java·大数据·人工智能·安全·重构·智慧城市·智慧园区
驾数者9 小时前
Flink SQL容错机制:Checkpoint与Savepoint实战解析
大数据·sql·flink
千汇数据的老司机9 小时前
靠资源拿项目VS靠技术拿项目,二者的深刻区分。
大数据·人工智能·谈单
Elastic 中国社区官方博客11 小时前
jina-embeddings-v3 现已在 Elastic Inference Service 上可用
大数据·人工智能·elasticsearch·搜索引擎·ai·jina
Elastic 中国社区官方博客11 小时前
使用 jina-embeddings-v3 和 Elasticsearch 进行多语言搜索
大数据·数据库·人工智能·elasticsearch·搜索引擎·全文检索·jina
AIFQuant11 小时前
2026 越南证券交易所(VN30, HOSE)API 接口指南
大数据·后端·python·金融·restful