深入探索机器学习性能优化的关键路径——《特征工程训练营》

通过"特征工程"技术,可优化训练数据,提升机器学习流程的输出效果!"特征工程"基于现有数据设计相关的输入变量,由此简化训练过程,增强模型性能。调整超参数或模型的效果都不如特征工程;特征工程通过改变数据流程,大幅提升了性能。

《特征工程训练营》将列举6个实践项目,引导你利用特征工程优化训练数据。每章探讨一个代码驱动的新案例,涉及金融、医疗等行业。你将学会清洗和转换数据,减轻偏见。本书呈现各种性能提升技巧,涵盖从自然语言处理到时间序列分析等所有主要机器学习子领域。

相关推荐
jndingxin21 分钟前
OpenCV CUDA模块中矩阵操作------范数(Norm)相关函数
人工智能·opencv
何双新32 分钟前
第6讲、全面拆解Encoder、Decoder内部模块
人工智能
jzwei02332 分钟前
Transformer Decoder-Only 算力FLOPs估计
人工智能·深度学习·transformer
lilye6638 分钟前
精益数据分析(55/126):双边市场模式的挑战、策略与创业阶段关联
大数据·人工智能·数据分析
芒果量化40 分钟前
量化交易 - 网格交易策略实现与原理解析
python·算法·机器学习·金融
MUTA️1 小时前
ultalytics代码中模型接收多层输入的处理
深度学习·算法·yolo·机器学习·计算机视觉
weixin_408266341 小时前
深度学习-分布式训练机制
人工智能·分布式·深度学习
struggle20251 小时前
AgenticSeek开源的完全本地的 Manus AI。无需 API,享受一个自主代理,它可以思考、浏览 Web 和编码,只需支付电费。
人工智能·开源·自动化
Panesle1 小时前
阿里开源通义万相Wan2.1-VACE-14B:用于视频创建和编辑的一体化模型
人工智能·开源·大模型·文生视频·多模态·生成模型
QQ2740287562 小时前
Kite AI 自动机器人部署教程
linux·运维·服务器·人工智能·机器人·web3