深入探索机器学习性能优化的关键路径——《特征工程训练营》

通过"特征工程"技术,可优化训练数据,提升机器学习流程的输出效果!"特征工程"基于现有数据设计相关的输入变量,由此简化训练过程,增强模型性能。调整超参数或模型的效果都不如特征工程;特征工程通过改变数据流程,大幅提升了性能。

《特征工程训练营》将列举6个实践项目,引导你利用特征工程优化训练数据。每章探讨一个代码驱动的新案例,涉及金融、医疗等行业。你将学会清洗和转换数据,减轻偏见。本书呈现各种性能提升技巧,涵盖从自然语言处理到时间序列分析等所有主要机器学习子领域。

相关推荐
山烛6 分钟前
KNN 算法中的各种距离:从原理到应用
人工智能·python·算法·机器学习·knn·k近邻算法·距离公式
盲盒Q16 分钟前
《频率之光:归途之光》
人工智能·硬件架构·量子计算
墨染点香25 分钟前
第七章 Pytorch构建模型详解【构建CIFAR10模型结构】
人工智能·pytorch·python
go546315846525 分钟前
基于分组规则的Excel数据分组优化系统设计与实现
人工智能·学习·生成对抗网络·数学建模·语音识别
茫茫人海一粒沙31 分钟前
vLLM 的“投机取巧”:Speculative Decoding 如何加速大语言模型推理
人工智能·语言模型·自然语言处理
诗酒当趁年华33 分钟前
【NLP实践】二、自训练数据实现中文文本分类并提供RestfulAPI服务
人工智能·自然语言处理·分类
静心问道1 小时前
Idefics3:构建和更好地理解视觉-语言模型:洞察与未来方向
人工智能·多模态·ai技术应用
sheep88881 小时前
AI与区块链Web3技术融合:重塑数字经济的未来格局
人工智能·区块链
奋进的孤狼1 小时前
【Spring AI】阿里云DashScope灵积模型
人工智能·spring·阿里云·ai·云计算
AIGC_北苏1 小时前
让UV管理一切!!!
linux·人工智能·uv