(即插即用模块-Attention部分) 二十、(2021) GAA 门控轴向注意力

文章目录

paper:Medical Transformer: Gated Axial-Attention for Medical Image Segmentation

Code:https://github.com/jeya-maria-jose/Medical-Transformer


1、Gated Axial-Attention

论文首先分析了 ViTs 在训练小规模数据集时的弊端以及指出了 ViTs 的计算复杂度偏高。为此,论文提出了一种门控轴向注意力(Gated Axial-Attention),其通过在自注意力模块中引入额外的门控机制来扩展现有的体系结构。在分析了位置偏差难以学习、相对位置编码不够准确等问题后,通过将可控制的影响位置偏差施加在编码的非本地上下文来实现改进。Gated Axial-Attention的 核心思想是Gate门控机制,通过引入 Gate 控制机制来控制位置编码对 Self-Attention 的影响程度。

对于一个输入特征 X,Gated Axial-Attention的实现过程:

  1. 输入特征图: 将输入图像提取特征图,并进行通道维度上的线性变换,得到 Query、Key 和 Value 向量。

  2. Axial-Attention

    在高度方向上进行 1D Self-Attention,计算像素之间的依赖关系。

    在宽度方向上进行 1D Self-Attention,计算像素之间的依赖关系。

  3. Positional Encoding:计算相对位置编码,将像素位置信息融入到 Query、Key 和 Value 向量中。

  4. Gate 控制机制:通过可学习的 Gate 参数,控制相对位置编码对 Self-Attention 的影响程度。

  5. 输出特征图: 将经过 Self-Attention 和 Gate 控制的特征图进行线性变换,得到最终输出特征图。

Gated Axial-Attention 结构图:

2、代码实现

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F
import math


def conv1x1(in_planes, out_planes, stride=1):
    """1x1 卷积"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


class qkv_transform(nn.Conv1d):
    """Conv1d for qkv_transform"""


class AxialAttention(nn.Module):
    def __init__(self, in_planes, out_planes, groups=8, kernel_size=56,
                 stride=1, bias=False, width=False):
        assert (in_planes % groups == 0) and (out_planes % groups == 0)
        super(AxialAttention, self).__init__()
        self.in_planes = in_planes
        self.out_planes = out_planes
        self.groups = groups
        self.group_planes = out_planes // groups
        self.kernel_size = kernel_size
        self.stride = stride
        self.bias = bias
        self.width = width

        # Multi-head self attention
        self.qkv_transform = qkv_transform(in_planes, out_planes * 2, kernel_size=1, stride=1,
                                           padding=0, bias=False)
        self.bn_qkv = nn.BatchNorm1d(out_planes * 2)
        self.bn_similarity = nn.BatchNorm2d(groups * 3)

        self.bn_output = nn.BatchNorm1d(out_planes * 2)

        # Position embedding
        self.relative = nn.Parameter(torch.randn(self.group_planes * 2, kernel_size * 2 - 1), requires_grad=True)
        query_index = torch.arange(kernel_size).unsqueeze(0)
        key_index = torch.arange(kernel_size).unsqueeze(1)
        relative_index = key_index - query_index + kernel_size - 1
        self.register_buffer('flatten_index', relative_index.view(-1))
        if stride > 1:
            self.pooling = nn.AvgPool2d(stride, stride=stride)

        self.reset_parameters()

    def forward(self, x):
        # pdb.set_trace()
        if self.width:
            x = x.permute(0, 2, 1, 3)
        else:
            x = x.permute(0, 3, 1, 2)  # N, W, C, H
        N, W, C, H = x.shape
        x = x.contiguous().view(N * W, C, H)

        # Transformations
        qkv = self.bn_qkv(self.qkv_transform(x))
        q, k, v = torch.split(qkv.reshape(N * W, self.groups, self.group_planes * 2, H),
                              [self.group_planes // 2, self.group_planes // 2, self.group_planes], dim=2)

        # Calculate position embedding
        all_embeddings = torch.index_select(self.relative, 1, self.flatten_index).view(self.group_planes * 2,
                                                                                       self.kernel_size,
                                                                                       self.kernel_size)
        q_embedding, k_embedding, v_embedding = torch.split(all_embeddings,
                                                            [self.group_planes // 2, self.group_planes // 2,
                                                             self.group_planes], dim=0)

        qr = torch.einsum('bgci,cij->bgij', q, q_embedding)
        kr = torch.einsum('bgci,cij->bgij', k, k_embedding).transpose(2, 3)

        qk = torch.einsum('bgci, bgcj->bgij', q, k)

        stacked_similarity = torch.cat([qk, qr, kr], dim=1)
        stacked_similarity = self.bn_similarity(stacked_similarity).view(N * W, 3, self.groups, H, H).sum(dim=1)
        # stacked_similarity = self.bn_qr(qr) + self.bn_kr(kr) + self.bn_qk(qk)
        # (N, groups, H, H, W)
        similarity = F.softmax(stacked_similarity, dim=3)
        sv = torch.einsum('bgij,bgcj->bgci', similarity, v)
        sve = torch.einsum('bgij,cij->bgci', similarity, v_embedding)
        stacked_output = torch.cat([sv, sve], dim=-1).view(N * W, self.out_planes * 2, H)
        output = self.bn_output(stacked_output).view(N, W, self.out_planes, 2, H).sum(dim=-2)

        if self.width:
            output = output.permute(0, 2, 1, 3)
        else:
            output = output.permute(0, 2, 3, 1)

        if self.stride > 1:
            output = self.pooling(output)

        return output

    def reset_parameters(self):
        self.qkv_transform.weight.data.normal_(0, math.sqrt(1. / self.in_planes))
        # nn.init.uniform_(self.relative, -0.1, 0.1)
        nn.init.normal_(self.relative, 0., math.sqrt(1. / self.group_planes))


if __name__ == '__main__':
    x = torch.randn(4, 512, 7, 7).cuda()
    # kernel_size 要跟 h,w 相同
    model = AxialAttention(512, 512, kernel_size=7).cuda()
    out = model(x)
    print(out.shape)

本文只是对论文中的即插即用模块做了整合,对论文中的一些地方难免有遗漏之处,如果想对这些模块有更详细的了解,还是要去读一下原论文,肯定会有更多收获。

相关推荐
林泽毅36 分钟前
SwanLab硬件监控:英伟达、昇腾、寒武纪
python·深度学习·昇腾·英伟达·swanlab·寒武纪·训练实战
Watermelo61738 分钟前
Manus使用的MCP协议是什么?人工智能知识分享的“万能插头”
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·数据挖掘
zew10409945889 小时前
基于深度学习的手势识别系统设计
人工智能·深度学习·算法·数据集·pyqt·yolov5·训练模型
豆芽8199 小时前
核函数(机器学习深度学习)
人工智能·深度学习
Ronin-Lotus10 小时前
深度学习篇---模型GPU训练
人工智能·pytorch·python·深度学习·paddlepaddle·并行·openmp
风吹草地现牛羊的马10 小时前
mac m1/m2/m3 pyaudio的安装
深度学习·macos·自然语言处理·#pyaudio
罗西的思考10 小时前
探秘Transformer系列之(21)--- MoE
人工智能·深度学习·机器学习
Blossom.11811 小时前
量子计算:未来计算技术的革命性突破
人工智能·科技·深度学习·神经网络·机器学习·计算机视觉·量子计算
Wnq1007211 小时前
DEEPSEEK创业项目推荐:
运维·计算机视觉·智能硬件·ai创业·deepseek
小鸭呱呱呱11 小时前
【CSS】- 表单控件的 placeholder 如何控制换行显示?
前端·javascript·css·深度学习·面试·职场和发展·html