深入解析 PyTorch 的 torch.load() 函数:用法、参数与实际应用示例

深入解析 PyTorch 的 torch.load() 函数:用法、参数与实际应用示例

函数 torch.load() 是一个在PyTorch中用于加载通过 torch.save() 保存的序列化对象的核心功能。这个函数广泛应用于加载预训练模型、模型的状态字典(state dictionaries)、优化器状态以及其他PyTorch对象。它利用Python的反序列化能力,特别地对张量的底层存储(storages)进行了特殊处理,以支持跨设备加载和内存效率。

基本语法和参数详解

python 复制代码
torch.load(f, map_location=None, pickle_module=pickle, *, weights_only=False, mmap=None, **pickle_load_args)
参数详细说明
  • f (Union[str, PathLike, BinaryIO, IO[bytes]])

    • 类型:可以是字符串、路径对象或文件对象。
    • 含义 :指定要加载的文件的路径或文件对象。如果是文件对象,它必须实现基本的文件读取方法,如 read()seek()
  • map_location (Optional[Union[Callable[[Storage, str], Storage], torch.device, str, Dict[str, str]])

    • 类型:可选,可以是函数、设备对象、字符串或字典。
    • 含义 :用于指定存储设备的重新映射策略。
      • 函数:如果提供了函数,它应该接受存储和位置标签作为参数,并返回新的存储位置。
      • 设备或字符串 :可以直接指定所有张量应该被加载到的设备,如 'cpu''cuda:0'
      • 字典:将文件中的位置标签映射到新的存储位置。
  • pickle_module (Optional[Any])

    • 类型:模块。
    • 含义 :用于反序列化的模块,默认为Python的 pickle 模块。如果序列化时使用了特定的模块,则加载时也必须使用相同的模块。
  • weights_only (Optional[bool])

    • 类型:布尔值。
    • 含义 :如果设置为 True,则加载过程将限制为仅加载张量、基本数据类型、字典和通过 torch.serialization.add_safe_globals() 添加的安全类型。
  • mmap (Optional[bool])

    • 类型:布尔值。
    • 含义 :如果设置为 True,则文件将通过内存映射的方式访问,而不是完全加载到内存中。这对处理大型数据文件特别有用,因为它减少了内存使用并可能提高访问速度。
  • pickle_load_args (Any)

    • 类型:关键字参数。
    • 含义 :传递给 pickle_module.load()pickle_module.Unpickler() 的附加参数,例如 encoding

实际使用示例

示例 1: 基础加载模型

加载一个在GPU上训练并保存的模型到CPU上进行推理:

python 复制代码
import torch

# 设置加载路径
model_path = 'gpu_trained_model.pth'

# 加载模型到CPU
model = torch.load(model_path, map_location='cpu')

# 打印模型结构确认加载无误
print(model)
示例 2: 使用内存映射和仅加载权重

对于大型模型文件,使用内存映射加载权重,减少内存占用:

python 复制代码
import torch

# 模型文件路径
large_model_path = 'large_model_weights.pth'

# 使用内存映射方式加载模型权重到CPU,限制为仅加载权重
model_weights = torch.load(large_model_path, map_location='cpu', mmap=True, weights_only=True)

# 假设 MyModel 是模型的架构类
model = MyModel()
model.load_state_dict(model_weights)

# 输出模型确保权重被正确加载
print(model)

这些示例清楚地展示了如何灵活使用 torch.load() 的不同参数来优化模型的加载策略,适应不同的硬件环境和内存限制,从而实现高效的模型部署。

相关推荐
IT古董16 分钟前
第四章:大模型(LLM)】06.langchain原理-(3)LangChain Prompt 用法
java·人工智能·python
TGITCIC1 小时前
AI Search进化论:从RAG到DeepSearch的智能体演变全过程
人工智能·ai大模型·ai智能体·ai搜索·大模型ai·deepsearch·ai search
lucky_lyovo5 小时前
自然语言处理NLP---预训练模型与 BERT
人工智能·自然语言处理·bert
fantasy_arch5 小时前
pytorch例子计算两张图相似度
人工智能·pytorch·python
AndrewHZ6 小时前
【3D重建技术】如何基于遥感图像和DEM等数据进行城市级高精度三维重建?
图像处理·人工智能·深度学习·3d·dem·遥感图像·3d重建
飞哥数智坊6 小时前
Coze实战第18讲:Coze+计划任务,我终于实现了企微资讯简报的定时推送
人工智能·coze·trae
WBluuue7 小时前
数学建模:智能优化算法
python·机器学习·数学建模·爬山算法·启发式算法·聚类·模拟退火算法
Code_流苏7 小时前
AI热点周报(8.10~8.16):AI界“冰火两重天“,GPT-5陷入热议,DeepSeek R2模型训练受阻?
人工智能·gpt·gpt5·deepseek r2·ai热点·本周周报
赴3357 小时前
矿物分类案列 (一)六种方法对数据的填充
人工智能·python·机器学习·分类·数据挖掘·sklearn·矿物分类
大模型真好玩7 小时前
一文深度解析OpenAI近期发布系列大模型:意欲一统大模型江湖?
人工智能·python·mcp